CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states |
Chi Zhang(张驰)1,2,4,5, Shan Qiao(乔山)1,4,5, Hong Xiao(肖宏)3, and Tao Hu(胡涛)2,† |
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 2 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 3 Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; 4 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China; 5 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Anisotropy is an important feature of layered materials, and a large anisotropy is usually related to the two-dimensional characteristics. We investigated the anisotropy of the layered transition metal dicalcogenide 2H-NbSe$_2$ in the superconducting and charge density wave (CDW) states using magnetotransport measurements. In the superconducting state, the normalized $H_{\rm c2}^{||c}/H_{\rm p}$ is independent of the thickness of 2H-NbSe$_2$, while $H_{\rm c2}^{||ab}/H_{\rm p}$ increases significantly with decreasing thickness, where $H_{\rm p}$ is the Pauli limiting magnetic field and $H_{\rm c2}^{||c}$ and $H_{\rm c2}^{||ab}$ are the upper critical fields in the $c$ and $ab$ directions, respectively. It is found that the superconducting anisotropy parameter $\gamma_{H_{\rm c2}}=H_{\rm c2}^{||ab}/H_{\rm c2}^{||c}$ increases with reduction in the thickness of 2H-NbSe$_2$. In the CDW state, the angular ($\theta$) dependence of magnetoresistance, $R(H,\theta)$ scales with $H(\cos^2\theta+\gamma_{\rm CDW}^{-2}\sin^2\theta)^{1/2}$, which decreases with increasing temperature and disappears at about 40 K. It is found that the CDW anisotropy parameter $\gamma_{\rm CDW}$ is much larger than the effective mass anisotropy but does not change a lot for ultrathin and bulk samples. Our results suggest the existence of three-dimensional superconductivity and quasi-two dimensional CDWs in bulk 2H-NbSe$_2$.
|
Received: 21 April 2022
Revised: 10 June 2022
Accepted manuscript online: 22 July 2022
|
PACS:
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
74.78.-w
|
(Superconducting films and low-dimensional structures)
|
|
74.25.F-
|
(Transport properties)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574338 and 12074038) and NSAF (Grant No. U1530402). |
Corresponding Authors:
Tao Hu
E-mail: hutao@baqis.ac.cn
|
Cite this article:
Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛) Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states 2023 Chin. Phys. B 32 047201
|
[1] Grüner G 1988 Rev. Mod. Phys. 60 1129 [2] Zaanen J and Gunnarsson O 1989 Phys. Rev. B 40 7391 [3] Tranquada J, Sternlieb B, Axe J, Nakamura Y and Uchida S 1995 Nature 375 561 [4] Wise W, Boyer M, Chatterjee K, Kondo T, Takeuchi T, Ikuta H, Wang Y and Hudson E 2008 Nat. Phys. 4 696 [5] Chang J, Blackburn E, Holmes A, Christensen N B, Larsen J, Mesot J, Liang R, Bonn D, Hardy W, Watenphul A, et al. 2012 Nat. Phys. 8 871 [6] Achkar A, Sutarto R, Mao X, He F, Frano A, Blanco-Canosa S, Le Tacon M, Ghiringhelli G, Braicovich L, Minola M, et al. 2012 Phys. Rev. Lett. 109 167001 [7] Comin R, Frano A, Yee M M, Yoshida Y, Eisaki H, Schierle E, Weschke E, Sutarto R, He F, Soumyanarayanan A, et al. 2014 Science 343 390 [8] da Silva Neto E H, Aynajian P, Frano A, Comin R, Schierle E, Weschke E, Gyenis A, Wen J, Schneeloch J, Xu Z, et al. 2014 Science 343 393 [9] Xi X, Zhao L, Wang Z, Berger H, Forró L, Shan J and Mak K F 2015 Nat. Nanotechnol. 10 765 [10] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X and Crommie M F 2016 Nat. Phys. 12 92 [11] Wilson J A, Di Salvo F and Mahajan S 1975 Adv. Phys. 24 117 [12] Moncton D E, Axe J D and DiSalvo F J 1977 Phys. Rev. B 16 801 [13] Moncton D, Axe J and DiSalvo F 1975 Phys. Rev. Lett. 34 734 [14] Berthier C, Molinié P and Jérome D 1976 Solid State Commun. 18 1393 [15] Cho K, Kończykowski M, Teknowijoyo S, Tanatar M A, Guss J, Gartin P, Wilde J M, Kreyssig A, McQueeney R, Goldman A I, et al. 2018 Nat. Commun. 9 1 [16] Wang H, Huang X, Lin J, Cui J, Chen Y, Zhu C, Liu F, Zeng Q, Zhou J, Yu P, et al. 2017 Nat. Commun. 8 1 [17] Xing Y, Zhao K, Shan P, Zheng F, Zhang Y, Fu H, Liu Y, Tian M, Xi C, Liu H, Feng J, Lin X, Ji S, Chen X, Xue Q K and Wang J 2017 Nano Lett. 17 6802 [18] Noat Y, Silva-Guillén J A, Cren T, Cherkez V, Brun C, Pons S, Debontridder F, Roditchev D, Sacks W, Cario L, Ordejón P, García A and Canadell E 2015 Phys. Rev. B 92 134510 [19] Khestanova E, Birkbeck J, Zhu M, Cao Y, Yu G L, Ghazaryan D, Yin J, Berger H, Forró L, Taniguchi T, Watanabe K, Gorbachev R V, Mishchenko A, Geim A K and Grigorieva I V 2018 Nano Lett. 18 2623 [20] Staley N E, Wu J, Eklund P, Liu Y, Li L and Xu Z 2009 Phys. Rev. B 80 184505 [21] Cao Y, Mishchenko A, Yu G, Khestanova E, Rooney A, Prestat E, Kretinin A, Blake P, Shalom M B, Woods C, et al. 2015 Nano Lett. 15 4914 [22] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139 [23] Soumyanarayanan A, Yee M M, He Y, Van Wezel J, Rahn D J, Rossnagel K, Hudson E, Norman M R and Hoffman J E 2013 Proc. Natl. Acad. Sci. USA 110 1623 [24] Wang C, Giambattista B, Slough C, Coleman R and Subramanian M 1990 Phys. Rev. B 42 8890 [25] Hess H, Robinson R and Waszczak J 1991 Physics B 169 422 [26] Ramos S L L M, Plumadore R, Boddison-Chouinard J, Hla S W, Guest J R, Gosztola D J, Pimenta M A and Luican-Mayer A 2019 Phys. Rev. B 100 165414 [27] Coelho P M, Lasek K, Nguyen Cong K, Li J, Niu W, Liu W, Oleynik I I and Batzill M 2019 J. Phys. Chem. Lett. 10 4987 [28] Nakata Y, Sugawara K, Chainani A, Oka H, Bao C, Zhou S, Chuang P Y, Cheng C M, Kawakami T, Saruta Y, et al. 2021 Nat. Commun. 12 5873 [29] Ong N 1982 Can. J. Phys. 60 757 [30] Grüner G 1988 Rev. Mod. Phys. 60 1129 [31] Naito M and Tanaka S 1982 J. Phys. Soc. Jpn. 51 219 [32] Jin Z, Li X, Mullen J T and Kim K W 2014 Phys. Rev. B 90 045422 [33] Lei L, Zhang C, Yu A, Wu Y, Peng W, Xiao H, Qiao S and Hu T 2021 Supercond. Sci. Technol. 34 025019 [34] Sinchenko A A, Grigoriev P D, Lejay P and Monceau P 2017 Phys. Rev. B 96 245129 [35] Feng Y, Wang Y, Silevitch D, Yan J Q, Kobayashi R, Hedo M, Nakama T, Ōnuki Y, Suslov A, Mihaila B, et al. 2019 Proc. Natl. Acad. Sci. USA 116 11201 [36] Inagaki K, Matsuura T, Tsubota M, Uji S, Honma T and Tanda S 2016 Phys. Rev. B 93 075423 [37] Zhao Y, Liu H, Yan J, An W, Liu J, Zhang X, Wang H, Liu Y, Jiang H, Li Q, Wang Y, Li X Z, Mandrus D, Xie X C, Pan M and Wang J 2015 Phys. Rev. B 92 041104 [38] He J, Wen L, Wu Y, Liu J, Tang G, Yang Y, Xing H, Mao Z, Sun H and Liu Y 2018 Appl. Phys. Lett. 113 192401 [39] Zhang C, Hu T, Wang T, Wu Y, Yu A, Chu J, Zhang H, Zhang X, Xiao H, Peng W, Di Z, Qiao S and Mu G 2021 2D Mater. 8 025024 [40] Li L J, Xu Z A, Shen J Q, Qiu L M and Gan Z H 2005 J. Phys.: Condens. Matter 17 493 [41] Benyamini A, Telford E, Kennes D, Wang D, Williams A, Watanabe K, Taniguchi T, Shahar D, Hone J, Dean C, et al. 2019 Nat. Phys. 15 947 [42] Ephron D, Yazdani A, Kapitulnik A and Beasley M 1996 Phys. Rev. Lett. 76 1529 [43] Geshkenbein V, Larkin A, Feigel'Man M and Vinokur V 1989 Physica C 162-164 239 [44] Naito M and Tanaka S 1982 J. Phys. Soc. Jpn. 51 228 [45] Liang T, Gibson Q, Ali M N, Liu M, Cava R and Ong N 2015 Nat. Mater. 14 280 [46] Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, et al. 2015 Nat. Phys. 11 645 [47] Woods J M, Shen J, Kumaravadivel P, Pang Y, Xie Y, Pan G A, Li M, Altman E I, Lu L and Cha J J 2017 ACS Appl. Mater. & Inter. 9 23175 [48] Thoutam L, Wang Y, Xiao Z, Das S, Luican-Mayer A, Divan R, Crabtree G and Kwok W 2015 Phys. Rev. Lett. 115 046602 [49] Weber F, Hott R, Heid R, Lev L L, Caputo M, Schmitt T and Strocov V N 2018 Phys. Rev. B 97 235122 [50] Johannes M D, Mazin I I and Howells C A 2006 Phys. Rev. B 73 205102 [51] Dordevic S, Basov D, Dynes R and Bucher E 2001 Phys. Rev. B 64 161103 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|