Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states
Chi Zhang(张驰)1,2,4,5, Shan Qiao(乔山)1,4,5, Hong Xiao(肖宏)3, and Tao Hu(胡涛)2,†
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 2 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 3 Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China; 4 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China; 5 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract Anisotropy is an important feature of layered materials, and a large anisotropy is usually related to the two-dimensional characteristics. We investigated the anisotropy of the layered transition metal dicalcogenide 2H-NbSe in the superconducting and charge density wave (CDW) states using magnetotransport measurements. In the superconducting state, the normalized is independent of the thickness of 2H-NbSe, while increases significantly with decreasing thickness, where is the Pauli limiting magnetic field and and are the upper critical fields in the and directions, respectively. It is found that the superconducting anisotropy parameter increases with reduction in the thickness of 2H-NbSe. In the CDW state, the angular () dependence of magnetoresistance, scales with , which decreases with increasing temperature and disappears at about 40 K. It is found that the CDW anisotropy parameter is much larger than the effective mass anisotropy but does not change a lot for ultrathin and bulk samples. Our results suggest the existence of three-dimensional superconductivity and quasi-two dimensional CDWs in bulk 2H-NbSe.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574338 and 12074038) and NSAF (Grant No. U1530402).
Corresponding Authors:
Tao Hu
E-mail: hutao@baqis.ac.cn
Cite this article:
Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛) Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states 2023 Chin. Phys. B 32 047201
[1] Grüner G 1988 Rev. Mod. Phys.60 1129 [2] Zaanen J and Gunnarsson O 1989 Phys. Rev. B40 7391 [3] Tranquada J, Sternlieb B, Axe J, Nakamura Y and Uchida S 1995 Nature375 561 [4] Wise W, Boyer M, Chatterjee K, Kondo T, Takeuchi T, Ikuta H, Wang Y and Hudson E 2008 Nat. Phys.4 696 [5] Chang J, Blackburn E, Holmes A, Christensen N B, Larsen J, Mesot J, Liang R, Bonn D, Hardy W, Watenphul A, et al. 2012 Nat. Phys.8 871 [6] Achkar A, Sutarto R, Mao X, He F, Frano A, Blanco-Canosa S, Le Tacon M, Ghiringhelli G, Braicovich L, Minola M, et al. 2012 Phys. Rev. Lett.109 167001 [7] Comin R, Frano A, Yee M M, Yoshida Y, Eisaki H, Schierle E, Weschke E, Sutarto R, He F, Soumyanarayanan A, et al. 2014 Science343 390 [8] da Silva Neto E H, Aynajian P, Frano A, Comin R, Schierle E, Weschke E, Gyenis A, Wen J, Schneeloch J, Xu Z, et al. 2014 Science343 393 [9] Xi X, Zhao L, Wang Z, Berger H, Forró L, Shan J and Mak K F 2015 Nat. Nanotechnol.10 765 [10] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X and Crommie M F 2016 Nat. Phys.12 92 [11] Wilson J A, Di Salvo F and Mahajan S 1975 Adv. Phys.24 117 [12] Moncton D E, Axe J D and DiSalvo F J 1977 Phys. Rev. B16 801 [13] Moncton D, Axe J and DiSalvo F 1975 Phys. Rev. Lett.34 734 [14] Berthier C, Molinié P and Jérome D 1976 Solid State Commun.18 1393 [15] Cho K, Kończykowski M, Teknowijoyo S, Tanatar M A, Guss J, Gartin P, Wilde J M, Kreyssig A, McQueeney R, Goldman A I, et al. 2018 Nat. Commun.9 1 [16] Wang H, Huang X, Lin J, Cui J, Chen Y, Zhu C, Liu F, Zeng Q, Zhou J, Yu P, et al. 2017 Nat. Commun.8 1 [17] Xing Y, Zhao K, Shan P, Zheng F, Zhang Y, Fu H, Liu Y, Tian M, Xi C, Liu H, Feng J, Lin X, Ji S, Chen X, Xue Q K and Wang J 2017 Nano Lett.17 6802 [18] Noat Y, Silva-Guillén J A, Cren T, Cherkez V, Brun C, Pons S, Debontridder F, Roditchev D, Sacks W, Cario L, Ordejón P, García A and Canadell E 2015 Phys. Rev. B92 134510 [19] Khestanova E, Birkbeck J, Zhu M, Cao Y, Yu G L, Ghazaryan D, Yin J, Berger H, Forró L, Taniguchi T, Watanabe K, Gorbachev R V, Mishchenko A, Geim A K and Grigorieva I V 2018 Nano Lett.18 2623 [20] Staley N E, Wu J, Eklund P, Liu Y, Li L and Xu Z 2009 Phys. Rev. B80 184505 [21] Cao Y, Mishchenko A, Yu G, Khestanova E, Rooney A, Prestat E, Kretinin A, Blake P, Shalom M B, Woods C, et al. 2015 Nano Lett.15 4914 [22] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys.12 139 [23] Soumyanarayanan A, Yee M M, He Y, Van Wezel J, Rahn D J, Rossnagel K, Hudson E, Norman M R and Hoffman J E 2013 Proc. Natl. Acad. Sci. USA110 1623 [24] Wang C, Giambattista B, Slough C, Coleman R and Subramanian M 1990 Phys. Rev. B42 8890 [25] Hess H, Robinson R and Waszczak J 1991 Physics B169 422 [26] Ramos S L L M, Plumadore R, Boddison-Chouinard J, Hla S W, Guest J R, Gosztola D J, Pimenta M A and Luican-Mayer A 2019 Phys. Rev. B100 165414 [27] Coelho P M, Lasek K, Nguyen Cong K, Li J, Niu W, Liu W, Oleynik I I and Batzill M 2019 J. Phys. Chem. Lett.10 4987 [28] Nakata Y, Sugawara K, Chainani A, Oka H, Bao C, Zhou S, Chuang P Y, Cheng C M, Kawakami T, Saruta Y, et al. 2021 Nat. Commun.12 5873 [29] Ong N 1982 Can. J. Phys.60 757 [30] Grüner G 1988 Rev. Mod. Phys.60 1129 [31] Naito M and Tanaka S 1982 J. Phys. Soc. Jpn.51 219 [32] Jin Z, Li X, Mullen J T and Kim K W 2014 Phys. Rev. B90 045422 [33] Lei L, Zhang C, Yu A, Wu Y, Peng W, Xiao H, Qiao S and Hu T 2021 Supercond. Sci. Technol.34 025019 [34] Sinchenko A A, Grigoriev P D, Lejay P and Monceau P 2017 Phys. Rev. B96 245129 [35] Feng Y, Wang Y, Silevitch D, Yan J Q, Kobayashi R, Hedo M, Nakama T, Ōnuki Y, Suslov A, Mihaila B, et al. 2019 Proc. Natl. Acad. Sci. USA116 11201 [36] Inagaki K, Matsuura T, Tsubota M, Uji S, Honma T and Tanda S 2016 Phys. Rev. B93 075423 [37] Zhao Y, Liu H, Yan J, An W, Liu J, Zhang X, Wang H, Liu Y, Jiang H, Li Q, Wang Y, Li X Z, Mandrus D, Xie X C, Pan M and Wang J 2015 Phys. Rev. B92 041104 [38] He J, Wen L, Wu Y, Liu J, Tang G, Yang Y, Xing H, Mao Z, Sun H and Liu Y 2018 Appl. Phys. Lett.113 192401 [39] Zhang C, Hu T, Wang T, Wu Y, Yu A, Chu J, Zhang H, Zhang X, Xiao H, Peng W, Di Z, Qiao S and Mu G 2021 2D Mater.8 025024 [40] Li L J, Xu Z A, Shen J Q, Qiu L M and Gan Z H 2005 J. Phys.: Condens. Matter17 493 [41] Benyamini A, Telford E, Kennes D, Wang D, Williams A, Watanabe K, Taniguchi T, Shahar D, Hone J, Dean C, et al. 2019 Nat. Phys.15 947 [42] Ephron D, Yazdani A, Kapitulnik A and Beasley M 1996 Phys. Rev. Lett.76 1529 [43] Geshkenbein V, Larkin A, Feigel'Man M and Vinokur V 1989 Physica C162-164 239 [44] Naito M and Tanaka S 1982 J. Phys. Soc. Jpn.51 228 [45] Liang T, Gibson Q, Ali M N, Liu M, Cava R and Ong N 2015 Nat. Mater.14 280 [46] Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, et al. 2015 Nat. Phys.11 645 [47] Woods J M, Shen J, Kumaravadivel P, Pang Y, Xie Y, Pan G A, Li M, Altman E I, Lu L and Cha J J 2017 ACS Appl. Mater. & Inter. 9 23175 [48] Thoutam L, Wang Y, Xiao Z, Das S, Luican-Mayer A, Divan R, Crabtree G and Kwok W 2015 Phys. Rev. Lett.115 046602 [49] Weber F, Hott R, Heid R, Lev L L, Caputo M, Schmitt T and Strocov V N 2018 Phys. Rev. B97 235122 [50] Johannes M D, Mazin I I and Howells C A 2006 Phys. Rev. B73 205102 [51] Dordevic S, Basov D, Dynes R and Bucher E 2001 Phys. Rev. B64 161103
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.