Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 047201    DOI: 10.1088/1674-1056/ac8343
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states

Chi Zhang(张驰)1,2,4,5, Shan Qiao(乔山)1,4,5, Hong Xiao(肖宏)3, and Tao Hu(胡涛)2,†
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
2 Beijing Academy of Quantum Information Sciences, Beijing 100193, China;
3 Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China;
4 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China;
5 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Anisotropy is an important feature of layered materials, and a large anisotropy is usually related to the two-dimensional characteristics. We investigated the anisotropy of the layered transition metal dicalcogenide 2H-NbSe$_2$ in the superconducting and charge density wave (CDW) states using magnetotransport measurements. In the superconducting state, the normalized $H_{\rm c2}^{||c}/H_{\rm p}$ is independent of the thickness of 2H-NbSe$_2$, while $H_{\rm c2}^{||ab}/H_{\rm p}$ increases significantly with decreasing thickness, where $H_{\rm p}$ is the Pauli limiting magnetic field and $H_{\rm c2}^{||c}$ and $H_{\rm c2}^{||ab}$ are the upper critical fields in the $c$ and $ab$ directions, respectively. It is found that the superconducting anisotropy parameter $\gamma_{H_{\rm c2}}=H_{\rm c2}^{||ab}/H_{\rm c2}^{||c}$ increases with reduction in the thickness of 2H-NbSe$_2$. In the CDW state, the angular ($\theta$) dependence of magnetoresistance, $R(H,\theta)$ scales with $H(\cos^2\theta+\gamma_{\rm CDW}^{-2}\sin^2\theta)^{1/2}$, which decreases with increasing temperature and disappears at about 40 K. It is found that the CDW anisotropy parameter $\gamma_{\rm CDW}$ is much larger than the effective mass anisotropy but does not change a lot for ultrathin and bulk samples. Our results suggest the existence of three-dimensional superconductivity and quasi-two dimensional CDWs in bulk 2H-NbSe$_2$.
Keywords:  anisotropy      superconductivity      charge density wave      transition metal dicalcogenides  
Received:  21 April 2022      Revised:  10 June 2022      Accepted manuscript online:  22 July 2022
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.78.-w (Superconducting films and low-dimensional structures)  
  74.25.F- (Transport properties)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574338 and 12074038) and NSAF (Grant No. U1530402).
Corresponding Authors:  Tao Hu     E-mail:  hutao@baqis.ac.cn

Cite this article: 

Chi Zhang(张驰), Shan Qiao(乔山), Hong Xiao(肖宏), and Tao Hu(胡涛) Anisotropy of 2H-NbSe2 in the superconducting and charge density wave states 2023 Chin. Phys. B 32 047201

[1] Grüner G 1988 Rev. Mod. Phys. 60 1129
[2] Zaanen J and Gunnarsson O 1989 Phys. Rev. B 40 7391
[3] Tranquada J, Sternlieb B, Axe J, Nakamura Y and Uchida S 1995 Nature 375 561
[4] Wise W, Boyer M, Chatterjee K, Kondo T, Takeuchi T, Ikuta H, Wang Y and Hudson E 2008 Nat. Phys. 4 696
[5] Chang J, Blackburn E, Holmes A, Christensen N B, Larsen J, Mesot J, Liang R, Bonn D, Hardy W, Watenphul A, et al. 2012 Nat. Phys. 8 871
[6] Achkar A, Sutarto R, Mao X, He F, Frano A, Blanco-Canosa S, Le Tacon M, Ghiringhelli G, Braicovich L, Minola M, et al. 2012 Phys. Rev. Lett. 109 167001
[7] Comin R, Frano A, Yee M M, Yoshida Y, Eisaki H, Schierle E, Weschke E, Sutarto R, He F, Soumyanarayanan A, et al. 2014 Science 343 390
[8] da Silva Neto E H, Aynajian P, Frano A, Comin R, Schierle E, Weschke E, Gyenis A, Wen J, Schneeloch J, Xu Z, et al. 2014 Science 343 393
[9] Xi X, Zhao L, Wang Z, Berger H, Forró L, Shan J and Mak K F 2015 Nat. Nanotechnol. 10 765
[10] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X and Crommie M F 2016 Nat. Phys. 12 92
[11] Wilson J A, Di Salvo F and Mahajan S 1975 Adv. Phys. 24 117
[12] Moncton D E, Axe J D and DiSalvo F J 1977 Phys. Rev. B 16 801
[13] Moncton D, Axe J and DiSalvo F 1975 Phys. Rev. Lett. 34 734
[14] Berthier C, Molinié P and Jérome D 1976 Solid State Commun. 18 1393
[15] Cho K, Kończykowski M, Teknowijoyo S, Tanatar M A, Guss J, Gartin P, Wilde J M, Kreyssig A, McQueeney R, Goldman A I, et al. 2018 Nat. Commun. 9 1
[16] Wang H, Huang X, Lin J, Cui J, Chen Y, Zhu C, Liu F, Zeng Q, Zhou J, Yu P, et al. 2017 Nat. Commun. 8 1
[17] Xing Y, Zhao K, Shan P, Zheng F, Zhang Y, Fu H, Liu Y, Tian M, Xi C, Liu H, Feng J, Lin X, Ji S, Chen X, Xue Q K and Wang J 2017 Nano Lett. 17 6802
[18] Noat Y, Silva-Guillén J A, Cren T, Cherkez V, Brun C, Pons S, Debontridder F, Roditchev D, Sacks W, Cario L, Ordejón P, García A and Canadell E 2015 Phys. Rev. B 92 134510
[19] Khestanova E, Birkbeck J, Zhu M, Cao Y, Yu G L, Ghazaryan D, Yin J, Berger H, Forró L, Taniguchi T, Watanabe K, Gorbachev R V, Mishchenko A, Geim A K and Grigorieva I V 2018 Nano Lett. 18 2623
[20] Staley N E, Wu J, Eklund P, Liu Y, Li L and Xu Z 2009 Phys. Rev. B 80 184505
[21] Cao Y, Mishchenko A, Yu G, Khestanova E, Rooney A, Prestat E, Kretinin A, Blake P, Shalom M B, Woods C, et al. 2015 Nano Lett. 15 4914
[22] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139
[23] Soumyanarayanan A, Yee M M, He Y, Van Wezel J, Rahn D J, Rossnagel K, Hudson E, Norman M R and Hoffman J E 2013 Proc. Natl. Acad. Sci. USA 110 1623
[24] Wang C, Giambattista B, Slough C, Coleman R and Subramanian M 1990 Phys. Rev. B 42 8890
[25] Hess H, Robinson R and Waszczak J 1991 Physics B 169 422
[26] Ramos S L L M, Plumadore R, Boddison-Chouinard J, Hla S W, Guest J R, Gosztola D J, Pimenta M A and Luican-Mayer A 2019 Phys. Rev. B 100 165414
[27] Coelho P M, Lasek K, Nguyen Cong K, Li J, Niu W, Liu W, Oleynik I I and Batzill M 2019 J. Phys. Chem. Lett. 10 4987
[28] Nakata Y, Sugawara K, Chainani A, Oka H, Bao C, Zhou S, Chuang P Y, Cheng C M, Kawakami T, Saruta Y, et al. 2021 Nat. Commun. 12 5873
[29] Ong N 1982 Can. J. Phys. 60 757
[30] Grüner G 1988 Rev. Mod. Phys. 60 1129
[31] Naito M and Tanaka S 1982 J. Phys. Soc. Jpn. 51 219
[32] Jin Z, Li X, Mullen J T and Kim K W 2014 Phys. Rev. B 90 045422
[33] Lei L, Zhang C, Yu A, Wu Y, Peng W, Xiao H, Qiao S and Hu T 2021 Supercond. Sci. Technol. 34 025019
[34] Sinchenko A A, Grigoriev P D, Lejay P and Monceau P 2017 Phys. Rev. B 96 245129
[35] Feng Y, Wang Y, Silevitch D, Yan J Q, Kobayashi R, Hedo M, Nakama T, Ōnuki Y, Suslov A, Mihaila B, et al. 2019 Proc. Natl. Acad. Sci. USA 116 11201
[36] Inagaki K, Matsuura T, Tsubota M, Uji S, Honma T and Tanda S 2016 Phys. Rev. B 93 075423
[37] Zhao Y, Liu H, Yan J, An W, Liu J, Zhang X, Wang H, Liu Y, Jiang H, Li Q, Wang Y, Li X Z, Mandrus D, Xie X C, Pan M and Wang J 2015 Phys. Rev. B 92 041104
[38] He J, Wen L, Wu Y, Liu J, Tang G, Yang Y, Xing H, Mao Z, Sun H and Liu Y 2018 Appl. Phys. Lett. 113 192401
[39] Zhang C, Hu T, Wang T, Wu Y, Yu A, Chu J, Zhang H, Zhang X, Xiao H, Peng W, Di Z, Qiao S and Mu G 2021 2D Mater. 8 025024
[40] Li L J, Xu Z A, Shen J Q, Qiu L M and Gan Z H 2005 J. Phys.: Condens. Matter 17 493
[41] Benyamini A, Telford E, Kennes D, Wang D, Williams A, Watanabe K, Taniguchi T, Shahar D, Hone J, Dean C, et al. 2019 Nat. Phys. 15 947
[42] Ephron D, Yazdani A, Kapitulnik A and Beasley M 1996 Phys. Rev. Lett. 76 1529
[43] Geshkenbein V, Larkin A, Feigel'Man M and Vinokur V 1989 Physica C 162-164 239
[44] Naito M and Tanaka S 1982 J. Phys. Soc. Jpn. 51 228
[45] Liang T, Gibson Q, Ali M N, Liu M, Cava R and Ong N 2015 Nat. Mater. 14 280
[46] Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, et al. 2015 Nat. Phys. 11 645
[47] Woods J M, Shen J, Kumaravadivel P, Pang Y, Xie Y, Pan G A, Li M, Altman E I, Lu L and Cha J J 2017 ACS Appl. Mater. & Inter. 9 23175
[48] Thoutam L, Wang Y, Xiao Z, Das S, Luican-Mayer A, Divan R, Crabtree G and Kwok W 2015 Phys. Rev. Lett. 115 046602
[49] Weber F, Hott R, Heid R, Lev L L, Caputo M, Schmitt T and Strocov V N 2018 Phys. Rev. B 97 235122
[50] Johannes M D, Mazin I I and Howells C A 2006 Phys. Rev. B 73 205102
[51] Dordevic S, Basov D, Dynes R and Bucher E 2001 Phys. Rev. B 64 161103
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[3] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[4] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[5] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[6] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[7] Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华). Chin. Phys. B, 2023, 32(1): 017503.
[8] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[9] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[10] Anisotropic superconducting properties of FeSe0.5Te0.5 single crystals
Jia-Ming Zhao(赵佳铭) and Zhi-He Wang(王智河). Chin. Phys. B, 2022, 31(9): 097402.
[11] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[12] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[13] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[14] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!