Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 047104    DOI: 10.1088/1674-1056/acac17
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit

Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬)
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
Abstract  Quantum many-body systems in which time-reversal symmetry is broken give rise to a wealth of exotic phases, and thus constitute one of the frontiers of modern condensed matter physics. Quantum simulation allows us to better understand many-body systems with huge Hilbert space, where classical simulation is usually inefficient. With superconducting quantum circuit as a platform for quantum simulation, we realize synthetic Abelian gauge fields by using microwave drive and tunable coupling in loop configurations to break the time-reversal symmetry of the system. Based on high-precision manipulation and readout of circuit-QED architecture, we demonstrate the chiral ground spin current of a time-reversal symmetry broken system with nontrivial interactions. Our work is a significant attempt to simulate quantum many-body systems with time-reversal symmetry breaking in multi-qubit superconducting processors.
Keywords:  superconducting qubit      time-reversal symmetry breaking      chirality  
Received:  21 October 2022      Revised:  30 November 2022      Accepted manuscript online:  16 December 2022
PACS:  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
Fund: Project supported by the Key R&D Program of Guangdong Province, China (Grant No. 2018B030326001), the National Natural Science Foundation of China (Grant Nos. 11474152, 12074179,U21A20436, and 61521001), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BE2021015-1).
Corresponding Authors:  Shao-Xiong Li, Yang Yu     E-mail:  shaoxiong.li@nju.edu.cn;yuyang@nju.edu.cn

Cite this article: 

Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬) Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit 2023 Chin. Phys. B 32 047104

[1] Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[2] Halperin B I 1984 Phys. Rev. Lett. 52 1583
[3] Feynman R P 1982 International Journal of Theoretical Physics 21 467
[4] Cirac J I and Zoller P 2012 Nat. Phys. 8 264
[5] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153
[6] Manovitz T, Shapira Y, Akerman N, Stern A and Ozeri R 2020 PRX Quantum 1 020303
[7] Graß T, Celi A, Pagano G and Lewenstein M 2018 Phys. Rev. A 97 010302
[8] Periwal A, Cooper E S, Kunkel P, Wienand J F, Davis E J and Schleier-Smith M 2021 Nature 600 630
[9] Lienhard V, Scholl P, Weber S, Barredo D, de Léséleuc S, Bai R, Lang N, Fleischhauer M, Büchler H P, Lahaye T, et al. 2020 Phys. Rev. X 10 021031
[10] Cai W, Han J, Mei F, Xu Y, Ma Y, Li X, Wang H, Song Y, Xue Z Y, Yin Z q et al. 2019 Phys. Rev. Lett. 123 080501
[11] Guo X Y, Ge Z Y, Li H, Wang Z, Zhang Y R, Song P, Xiang Z, Song X, Jin Y, Lu L, et al. 2021 npj Quantum Information 7 1
[12] Neill C, McCourt T, Mi X, Jiang Z, Niu M, Mruczkiewicz W, Aleiner I, Arute F, Arya K, Atalaya J, et al. 2021 Nature 594 508
[13] Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, et al. 2014 Nature 508 500
[14] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S and Oliver W D 2018 Phys. Rev. Appl. 10 054062
[15] Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X, et al. 2020 Phys. Rev. Appl. 14 024070
[16] Sete E A, Chen A Q, Manenti R, Kulshreshtha S and Poletto S 2021 Phys. Rev. Appl. 15 064063
[17] Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, et al. 2017 Nat. Phys. 13 146
[18] Liu W, Feng W, Ren W, Wang D W and Wang H 2020 Appl. Phys. Lett. 116 114001
[19] Vepsäläinen A and Paraoanu G S 2020 Advanced Quantum Technologies 3 1900121
[20] Wang D W, Song C, Feng W, Cai H, Xu D, Deng H, Li H, Zheng D, Zhu X, Wang H, et al. 2019 Nat. Phys. 15 382
[21] Klitzing K v, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[22] Xiang Z C, Huang K, Zhang Y R, Liu T, Shi Y H, Deng C L, Liu T, Li H, Liang G H, Mei Z Y, et al. 2022 arXiv preprint arXiv:2207.11797
[23] Koch J, Houck A A, Le Hur K and Girvin S 2010 Phys. Rev. A 82 043811
[24] Shapira Y, Manovitz T, Akerman N, Stern A and Ozeri R 2022 arXiv preprint arXiv:2205.11178
[25] Ash-Saki A, Alam M and Ghosh S 2020 IEEE Transactions on Quantum Engineering 1 1
[26] Abrams D M, Didier N, Caldwell S A, Johnson B R and Ryan C A 2019 Phys. Rev. Appl. 12 064022
[27] Mundada P, Zhang G, Hazard T and Houck A 2019 Phys. Rev. Appl. 12 054023
[28] Nuerbolati W, Han Z, Chu J, Zhou Y, Tan X, Yu Y, Liu S and Yan F 2022 Appl. Phys. Lett. 120 174001
[29] Stehlik J, Zajac D, Underwood D, Phung T, Blair J, Carnevale S, Klaus D, Keefe G, Carniol A, Kumph M, et al. 2021 Phys. Rev. Lett. 127 080505
[30] Mallet F, Ong F R, Palacios-Laloy A, Nguyen F, Bertet P, Vion D and Esteve D 2009 Nat. Phys. 5 791
[31] Filipp S, Maurer P, Leek P J, Baur M, Bianchetti R, Fink J, Göppl M, Steffen L, Gambetta J M, Blais A, et al. 2009 Phys. Rev. Lett. 102 200402
[32] Dewes A, Ong F R, Schmitt V, Lauro R, Boulant N, Bertet P, Vion D and Esteve D 2012 Phys. Rev. Lett. 108 057002
[33] Gorohovsky G, Pereira R G and Sela E 2015 Phys. Rev. B 91 245139
[34] Buccheri F, Egger R, Pereira R G and Ramos F B 2018 Phys. Rev. B 97 220402
[1] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[2] On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(9): 097306.
[3] On chip chiral and plasmonic hybrid dimer or tetramer: Generic way to reverse longitudinal and lateral optical binding forces
Sudipta Biswas, Roksana Khanam Rumi, Tasnia Rahman Raima, Saikat Chandra Das, and M R C Mahdy. Chin. Phys. B, 2022, 31(5): 054202.
[4] Strong chirality in twisted bilayer α-MoO3
Bi-Yuan Wu(吴必园), Zhang-Xing Shi(石章兴), Feng Wu(吴丰), Ming-Jun Wang(王明军), and Xiao-Hu Wu(吴小虎). Chin. Phys. B, 2022, 31(4): 044101.
[5] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[6] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[7] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[8] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[9] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[10] High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs
Song Wang(王松), Qihui Ye(叶起惠), Xudong Chen(陈绪栋), Yanzhu Hu(胡燕祝), and Gang Song(宋钢). Chin. Phys. B, 2021, 30(6): 067301.
[11] Enhanced circular dichroism of plasmonic system in the strong coupling regime
Yun-Fei Zou(邹云飞) and Li Yu(于丽). Chin. Phys. B, 2021, 30(4): 047304.
[12] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[13] Hardware for multi-superconducting qubit control and readout
Zhan Wang(王战), Hai Yu(于海), Rongli Liu(刘荣利), Xiao Ma(马骁), Xueyi Guo(郭学仪), Zhongcheng Xiang(相忠诚), Pengtao Song(宋鹏涛), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(11): 110305.
[14] Enhanced circular dichroism of TDBC in a metallic hole array structure
Tiantian He(何田田), Qihui Ye(叶起惠), Gang Song(宋钢). Chin. Phys. B, 2020, 29(9): 097306.
[15] Variable optical chirality in atomic assisted microcavity
Hao Zhang(张浩), Wen-Xiu Li (李文秀), Peng Han(韩鹏), Xiao-Yang Chang(常晓阳), Shuo Jiang(蒋硕), An-Ping Huang(黄安平), and Zhi-Song Xiao(肖志松). Chin. Phys. B, 2020, 29(11): 114207.
No Suggested Reading articles found!