CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit |
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄)†, and Yang Yu(于扬)‡ |
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract Quantum many-body systems in which time-reversal symmetry is broken give rise to a wealth of exotic phases, and thus constitute one of the frontiers of modern condensed matter physics. Quantum simulation allows us to better understand many-body systems with huge Hilbert space, where classical simulation is usually inefficient. With superconducting quantum circuit as a platform for quantum simulation, we realize synthetic Abelian gauge fields by using microwave drive and tunable coupling in loop configurations to break the time-reversal symmetry of the system. Based on high-precision manipulation and readout of circuit-QED architecture, we demonstrate the chiral ground spin current of a time-reversal symmetry broken system with nontrivial interactions. Our work is a significant attempt to simulate quantum many-body systems with time-reversal symmetry breaking in multi-qubit superconducting processors.
|
Received: 21 October 2022
Revised: 30 November 2022
Accepted manuscript online: 16 December 2022
|
PACS:
|
71.10.Fd
|
(Lattice fermion models (Hubbard model, etc.))
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
Fund: Project supported by the Key R&D Program of Guangdong Province, China (Grant No. 2018B030326001), the National Natural Science Foundation of China (Grant Nos. 11474152, 12074179,U21A20436, and 61521001), and the Natural Science Foundation of Jiangsu Province, China (Grant No. BE2021015-1). |
Corresponding Authors:
Shao-Xiong Li, Yang Yu
E-mail: shaoxiong.li@nju.edu.cn;yuyang@nju.edu.cn
|
Cite this article:
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬) Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit 2023 Chin. Phys. B 32 047104
|
[1] Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559 [2] Halperin B I 1984 Phys. Rev. Lett. 52 1583 [3] Feynman R P 1982 International Journal of Theoretical Physics 21 467 [4] Cirac J I and Zoller P 2012 Nat. Phys. 8 264 [5] Georgescu I M, Ashhab S and Nori F 2014 Rev. Mod. Phys. 86 153 [6] Manovitz T, Shapira Y, Akerman N, Stern A and Ozeri R 2020 PRX Quantum 1 020303 [7] Graß T, Celi A, Pagano G and Lewenstein M 2018 Phys. Rev. A 97 010302 [8] Periwal A, Cooper E S, Kunkel P, Wienand J F, Davis E J and Schleier-Smith M 2021 Nature 600 630 [9] Lienhard V, Scholl P, Weber S, Barredo D, de Léséleuc S, Bai R, Lang N, Fleischhauer M, Büchler H P, Lahaye T, et al. 2020 Phys. Rev. X 10 021031 [10] Cai W, Han J, Mei F, Xu Y, Ma Y, Li X, Wang H, Song Y, Xue Z Y, Yin Z q et al. 2019 Phys. Rev. Lett. 123 080501 [11] Guo X Y, Ge Z Y, Li H, Wang Z, Zhang Y R, Song P, Xiang Z, Song X, Jin Y, Lu L, et al. 2021 npj Quantum Information 7 1 [12] Neill C, McCourt T, Mi X, Jiang Z, Niu M, Mruczkiewicz W, Aleiner I, Arute F, Arya K, Atalaya J, et al. 2021 Nature 594 508 [13] Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, et al. 2014 Nature 508 500 [14] Yan F, Krantz P, Sung Y, Kjaergaard M, Campbell D L, Orlando T P, Gustavsson S and Oliver W D 2018 Phys. Rev. Appl. 10 054062 [15] Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X, et al. 2020 Phys. Rev. Appl. 14 024070 [16] Sete E A, Chen A Q, Manenti R, Kulshreshtha S and Poletto S 2021 Phys. Rev. Appl. 15 064063 [17] Roushan P, Neill C, Megrant A, Chen Y, Babbush R, Barends R, Campbell B, Chen Z, Chiaro B, Dunsworth A, et al. 2017 Nat. Phys. 13 146 [18] Liu W, Feng W, Ren W, Wang D W and Wang H 2020 Appl. Phys. Lett. 116 114001 [19] Vepsäläinen A and Paraoanu G S 2020 Advanced Quantum Technologies 3 1900121 [20] Wang D W, Song C, Feng W, Cai H, Xu D, Deng H, Li H, Zheng D, Zhu X, Wang H, et al. 2019 Nat. Phys. 15 382 [21] Klitzing K v, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494 [22] Xiang Z C, Huang K, Zhang Y R, Liu T, Shi Y H, Deng C L, Liu T, Li H, Liang G H, Mei Z Y, et al. 2022 arXiv preprint arXiv:2207.11797 [23] Koch J, Houck A A, Le Hur K and Girvin S 2010 Phys. Rev. A 82 043811 [24] Shapira Y, Manovitz T, Akerman N, Stern A and Ozeri R 2022 arXiv preprint arXiv:2205.11178 [25] Ash-Saki A, Alam M and Ghosh S 2020 IEEE Transactions on Quantum Engineering 1 1 [26] Abrams D M, Didier N, Caldwell S A, Johnson B R and Ryan C A 2019 Phys. Rev. Appl. 12 064022 [27] Mundada P, Zhang G, Hazard T and Houck A 2019 Phys. Rev. Appl. 12 054023 [28] Nuerbolati W, Han Z, Chu J, Zhou Y, Tan X, Yu Y, Liu S and Yan F 2022 Appl. Phys. Lett. 120 174001 [29] Stehlik J, Zajac D, Underwood D, Phung T, Blair J, Carnevale S, Klaus D, Keefe G, Carniol A, Kumph M, et al. 2021 Phys. Rev. Lett. 127 080505 [30] Mallet F, Ong F R, Palacios-Laloy A, Nguyen F, Bertet P, Vion D and Esteve D 2009 Nat. Phys. 5 791 [31] Filipp S, Maurer P, Leek P J, Baur M, Bianchetti R, Fink J, Göppl M, Steffen L, Gambetta J M, Blais A, et al. 2009 Phys. Rev. Lett. 102 200402 [32] Dewes A, Ong F R, Schmitt V, Lauro R, Boulant N, Bertet P, Vion D and Esteve D 2012 Phys. Rev. Lett. 108 057002 [33] Gorohovsky G, Pereira R G and Sela E 2015 Phys. Rev. B 91 245139 [34] Buccheri F, Egger R, Pereira R G and Ramos F B 2018 Phys. Rev. B 97 220402 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|