CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys |
Yadong Wang(王亚东)1,†, Fujie Zhang(张富界)1,†, Xuri Rao(饶旭日)1, Haoran Feng(冯皓然)1, Liwei Lin(林黎蔚)1,‡, Ding Ren(任丁)1, Bo Liu(刘波)1, and Ran Ang(昂然)1,2,§ |
1 Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; 2 Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China |
|
|
Abstract AgCrSe$_{2}$-based compounds have attracted much attention as an environmentally friendly thermoelectric material in recent years due to the intriguing liquid-like properties. However, the ultra-low carrier concentration and the high Ag$_{\rm Cr}$ deep-level defects limit the overall thermoelectric performance. Here, we successfully introduced Pb into Ag-deficient Ag$_{0.97}$CrSe$_{2}$ alloys to tune the carrier concentration across a broad temperature range. The Pb$^{2+}$ as an acceptor dopant preferentially occupies Cr sites, boosting the hole carrier concentration to 1.77$\times 10^{19}$ cm$^{-3}$ at room temperature. Furthermore, the Pb strongly inhibits the creation of intrinsic Ag$_{\rm Cr}$ defects, weakens the increased thermal excited ionization with the increasing temperature and slowed the rising trend of the carrier concentration. The designed carrier concentration matches the theoretically predicted optimized one over the entire temperature range, leading to a remarkable enhancement in power factor, especially the maximum power factor of $\sim 500 $μW$\cdot $m$^{-1}\cdot $K$^{-2}$ at 750 K is superior to most previous results. Additionally, the abundant point defects promote phonon scattering, thus reducing the lattice thermal conductivity. As a result, the maximum figure of merit $zT$ ($\sim 0.51$ at 750 K) is achieved in Ag$_{0.97}$Cr$_{0.995}$Pb$_{0.005}$Se$_{2}$. This work confirms the feasibility of manipulating deep-level defects to achieve temperature-dependent optimal carrier concentration and provides a valuable guidance for other thermoelectric materials.
|
Received: 28 November 2022
Revised: 17 January 2023
Accepted manuscript online: 31 January 2023
|
PACS:
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
73.50.Lw
|
(Thermoelectric effects)
|
|
74.25.fc
|
(Electric and thermal conductivity)
|
|
74.25.fg
|
(Thermoelectric effects)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0702100 and 2022YFB3803900), the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences (CAS)' Large-Scale Scientific Facility (Grant No. U1932106), and the Sichuan University Innovation Research Program of China (Grant No. 2020SCUNL112). |
Corresponding Authors:
Liwei Lin, Ran Ang
E-mail: linliwei@scu.edu.cn;rang@scu.edu.cn
|
Cite this article:
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然) Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys 2023 Chin. Phys. B 32 047202
|
[1] Bell L E 2008 Science 321 1457 [2] Pei Y Z, Gibbs Z M, Gloskovskii A, Balke B, Zeier W G and Snyder G J 2014 Adv. Energy Mater. 4 1400486 [3] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554 [4] Qin B C, Hu X G, Zhang Y, Wu H J, Pennycook S J and Zhao L D 2019 Adv. Electron Mater. 5 1900609 [5] Jiang B B, Wang W, Liu S X, Wang Y, Wang C F, Chen Y N, Xie L, Huang M Y and He J Q 2022 Science 377 208 [6] Perunnal S, Roychowdhury S, Negi D S, Datta R and Biswas K 2015 Chem. Mater. 27 7171 [7] Zhang J W, Song L R, Pedersen S H, Yin H, Hung L T and Iversen B B 2017 Nat. Commun. 8 13901 [8] Wood M, Kuo J J, Imasato K and Snyder G J 2019 Adv. Mater. 31 1902337 [9] Wang H, Chen J, Lu T Q, Zhu K J, Li S, Liu J and Zhao H Z 2018 Chin. Phys. B 27 047212 [10] Xia K Y, Hu C L, Fu C U, Zhao X B and Zhu T J 2021 Appl. Phys. Lett. 118 140503 [11] Yan X A, Joshi G, Liu W S, Lan Y C, Wang H, Lee S, Simonson J W, Poon S J, Tritt T M, Chen G and Ren Z F 2011 Nano Lett. 11 556 [12] Zhang Q, Song Q C, Wang X Y, Sun J Y, Zhu Q, Dahal K, Lin X, Cao F, Zhou J W, Chen S, Chen G, Mao J and Ren Z F 2018 Energy Environ. Sci. 11 933 [13] Zhu H, Sun W H, Armiento R, Lazic P and Ceder G 2014 Appl. Phys. Lett. 104 082107 [14] Gayner C and Amouyal Y 2020 Adv. Funct. Mater. 30 1901789 [15] Zhang X Y, Li J, Wang X, Chen Z W, Mao J J, Chen Y and Pei Y Z 2018 J. Am. Chem. Soc. 140 15883 [16] Li J, Chen Z W, Zhang X Y, Yu H L, Wu Z H, Xie H Q, Chen Y and Pei Y Z 2017 Adv. Sci. 4 1700341 [17] Anand S, Wood M, Xia Y, Wolverton C and Snyder G J 2019 Joule 3 1226 [18] Li W, Lin S Q, Weiss M, Chen Z W, Li J, Xu Y D, Zeier W G and Pei Y Z 2018 Adv. Energy Mater. 8 1800030 [19] Zhao K P, Qiu P F, Shi X and Chen L D 2020 Adv. Funct. Mater. 30 1903867 [20] Liu H L, Yuan X, Lu P, Shi X, Xu F F, He Y, Tang Y S, Bai S Q, Zhang W Q, Chen L D, Lin Y, Shi L, Lin H, Gao X Y, Zhang X M, Chi H and Uher C 2013 Adv. Mater. 25 6607 [21] Fujikane M, Kurosaki K, Muta H and Yamanaka S 2005 J. Alloys Compd. 393 299 [22] Pei Y Z, Heinz N A and Snyder G J 2011 J. Mater. Chem. 21 18256 [23] Lin S Q, Li W, Li S S, Zhang X Y, Chen Z W, Xu Y D, Chen Y and Pei Y Z 2017 Joule 1 816 [24] Liu J Y, Chen L and Wu L M 2022 Nat. Commun. 13 2966 [25] Yang L, Chen Z G, Han G, Hong M, Zou Y C and Zou J 2015 Nano Energy 16 367 [26] Liu W D, Yang L, Chen Z G and Zou J 2020 Adv. Mater. 32 1905703 [27] Xiao X X, Xie W J, Tang X F and Zhang Q J 2011 Chin. Phys. B 20 087201 [28] Bhattacharya S, Bohra A, Basu R, Bhatt R, Ahmad S, Meshram K, Debnath A K, Singh A, Sarkar S K, Navneethan M, Hayakawa Y, Aswal D K and Gupta S K 2014 J. Mater. Chem. A 2 17122 [29] Tang M J, Chen Z Y, Guo X M, Zhang F J, Zhong Y, Liu H T, Kang B and Ang R 2020 ACS Appl. Mater. Interfaces 12 36347 [30] Maignan A, Guilmeau E, Gascoin F, Breard Y and Hardy 2012 Sci. Technol. Adv. Mater. 13 053003 [31] Engelsman F M R, Wiegers G A, Jellinek F and Van Laar B 1973 J. Solid State Chem. 6 574 [32] Van Der Lee A and Wiegers G A 1989 J. Solid State Chem. 82 216 [33] Gautam U K, Seshadri R, Vasudevan S and Maignan A 2002 Solid State Commun. 122 607 [34] Yano R and Sasagawa T 2016 Cryst. Growth Des. 16 5618 [35] Ding J X, Niedziela J L, Bansal D, Wang J L, He X, May A F, Ehlers G, Abernathy D L, Said A, Alatas A, Ren Y, Arya G and Delaire O 2020 Proc. Natl. Acad. Sci. USA 117 3930 [36] Wu D, Huang S Z, Feng D, Li B, Chen Y X, Zhang J and He J Q 2016 Phys. Chem. Chem. Phys. 18 23872 [37] Tang M J, Chen Z Y, Yin C, Lin L W, Ren D, Liu B, Kang B and Ang R 2020 Appl. Phys. Lett. 116 163901 [38] Pei Y Z, May A F and Snyder G J 2011 Adv. Energy Mater. 1 291 [39] Zhao W Y, Liu Z Y, Wei P, Zhang Q J, Zhu W T, Su X L, Tang X F, Yang J H, Liu Y, Shi J, Chao Y M, Lin S Q and Pei Y Z 2017 Nat. Nanotechnol. 12 55 [40] Tang M J, Li J, Wang Y D, Gong H J, Huang Y P, Kang B, Zhang K and Ang R 2021 Appl. Phys. Lett. 118 193902 [41] Lu M, Zhang X, Zhang Y, Guo J, Shen X Y, Yu W W and Rogach A L 2018 Adv. Mater. 30 1804691 [42] He F Q, Song E H, Zhou Y Y, Ming H, Chen Z T, Wu J C, Shao P S, Yang X F, Xia Z G and Zhang Q Y 2021 Adv. Funct. Mater. 31 2103743 [43] Ravichandran K, Nithiyadevi K, Gobalakrishnan S, Raman R G, Baneto M, Swaminathan K and Sakthivel B 2016 Mater. Technol. 31 865 [44] Cai J F, Yang J X, Liu G Q, Xu L, Wang X M, Hu H Y, Tan X J and Jiang J 2022 Adv. Energy Mater. 12 2103287 [45] Wei T R, Tan G J, Wu C F, Chang C, Zhao L D, Li J F, Snyder G J and Kanatzidis M G 2017 Appl. Phys. Lett. 110 053901 [46] Li W, Zhou B Q, Li J, Zhu S Y and Li J 2018 J. Alloys Compd. 753 93 [47] Zhou B Q, Li W, Wang X, Li J, Zheng L T, Gao B, Zhang X Y and Pei Y Z 2019 Sci. China Mater. 62 379 [48] Liu W D, Yang L, Chen Z G and Zou J 2020 Adv. Mater. 32 1905703 [49] Xie L, Wu D, Yang H L, Yu Y, Wang Y F and He J Q 2019 J. Mater. Chem. C 7 9263 [50] Wang C and Chen Y 2020 Npj Comput. Mater. 6 26 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|