Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 047202    DOI: 10.1088/1674-1056/acb765
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys

Yadong Wang(王亚东)1,†, Fujie Zhang(张富界)1,†, Xuri Rao(饶旭日)1, Haoran Feng(冯皓然)1, Liwei Lin(林黎蔚)1,‡, Ding Ren(任丁)1, Bo Liu(刘波)1, and Ran Ang(昂然)1,2,§
1 Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China;
2 Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China
Abstract  AgCrSe$_{2}$-based compounds have attracted much attention as an environmentally friendly thermoelectric material in recent years due to the intriguing liquid-like properties. However, the ultra-low carrier concentration and the high Ag$_{\rm Cr}$ deep-level defects limit the overall thermoelectric performance. Here, we successfully introduced Pb into Ag-deficient Ag$_{0.97}$CrSe$_{2}$ alloys to tune the carrier concentration across a broad temperature range. The Pb$^{2+}$ as an acceptor dopant preferentially occupies Cr sites, boosting the hole carrier concentration to 1.77$\times 10^{19}$ cm$^{-3}$ at room temperature. Furthermore, the Pb strongly inhibits the creation of intrinsic Ag$_{\rm Cr}$ defects, weakens the increased thermal excited ionization with the increasing temperature and slowed the rising trend of the carrier concentration. The designed carrier concentration matches the theoretically predicted optimized one over the entire temperature range, leading to a remarkable enhancement in power factor, especially the maximum power factor of $\sim 500 $μW$\cdot $m$^{-1}\cdot $K$^{-2}$ at 750 K is superior to most previous results. Additionally, the abundant point defects promote phonon scattering, thus reducing the lattice thermal conductivity. As a result, the maximum figure of merit $zT$ ($\sim 0.51$ at 750 K) is achieved in Ag$_{0.97}$Cr$_{0.995}$Pb$_{0.005}$Se$_{2}$. This work confirms the feasibility of manipulating deep-level defects to achieve temperature-dependent optimal carrier concentration and provides a valuable guidance for other thermoelectric materials.
Keywords:  AgCrSe2      deep-level defects      carrier concentration modulation      thermoelectric properties  
Received:  28 November 2022      Revised:  17 January 2023      Accepted manuscript online:  31 January 2023
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  73.50.Lw (Thermoelectric effects)  
  74.25.fc (Electric and thermal conductivity)  
  74.25.fg (Thermoelectric effects)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0702100 and 2022YFB3803900), the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences (CAS)' Large-Scale Scientific Facility (Grant No. U1932106), and the Sichuan University Innovation Research Program of China (Grant No. 2020SCUNL112).
Corresponding Authors:  Liwei Lin, Ran Ang     E-mail:  linliwei@scu.edu.cn;rang@scu.edu.cn

Cite this article: 

Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然), Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然) Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys 2023 Chin. Phys. B 32 047202

[1] Bell L E 2008 Science 321 1457
[2] Pei Y Z, Gibbs Z M, Gloskovskii A, Balke B, Zeier W G and Snyder G J 2014 Adv. Energy Mater. 4 1400486
[3] Heremans J P, Jovovic V, Toberer E S, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[4] Qin B C, Hu X G, Zhang Y, Wu H J, Pennycook S J and Zhao L D 2019 Adv. Electron Mater. 5 1900609
[5] Jiang B B, Wang W, Liu S X, Wang Y, Wang C F, Chen Y N, Xie L, Huang M Y and He J Q 2022 Science 377 208
[6] Perunnal S, Roychowdhury S, Negi D S, Datta R and Biswas K 2015 Chem. Mater. 27 7171
[7] Zhang J W, Song L R, Pedersen S H, Yin H, Hung L T and Iversen B B 2017 Nat. Commun. 8 13901
[8] Wood M, Kuo J J, Imasato K and Snyder G J 2019 Adv. Mater. 31 1902337
[9] Wang H, Chen J, Lu T Q, Zhu K J, Li S, Liu J and Zhao H Z 2018 Chin. Phys. B 27 047212
[10] Xia K Y, Hu C L, Fu C U, Zhao X B and Zhu T J 2021 Appl. Phys. Lett. 118 140503
[11] Yan X A, Joshi G, Liu W S, Lan Y C, Wang H, Lee S, Simonson J W, Poon S J, Tritt T M, Chen G and Ren Z F 2011 Nano Lett. 11 556
[12] Zhang Q, Song Q C, Wang X Y, Sun J Y, Zhu Q, Dahal K, Lin X, Cao F, Zhou J W, Chen S, Chen G, Mao J and Ren Z F 2018 Energy Environ. Sci. 11 933
[13] Zhu H, Sun W H, Armiento R, Lazic P and Ceder G 2014 Appl. Phys. Lett. 104 082107
[14] Gayner C and Amouyal Y 2020 Adv. Funct. Mater. 30 1901789
[15] Zhang X Y, Li J, Wang X, Chen Z W, Mao J J, Chen Y and Pei Y Z 2018 J. Am. Chem. Soc. 140 15883
[16] Li J, Chen Z W, Zhang X Y, Yu H L, Wu Z H, Xie H Q, Chen Y and Pei Y Z 2017 Adv. Sci. 4 1700341
[17] Anand S, Wood M, Xia Y, Wolverton C and Snyder G J 2019 Joule 3 1226
[18] Li W, Lin S Q, Weiss M, Chen Z W, Li J, Xu Y D, Zeier W G and Pei Y Z 2018 Adv. Energy Mater. 8 1800030
[19] Zhao K P, Qiu P F, Shi X and Chen L D 2020 Adv. Funct. Mater. 30 1903867
[20] Liu H L, Yuan X, Lu P, Shi X, Xu F F, He Y, Tang Y S, Bai S Q, Zhang W Q, Chen L D, Lin Y, Shi L, Lin H, Gao X Y, Zhang X M, Chi H and Uher C 2013 Adv. Mater. 25 6607
[21] Fujikane M, Kurosaki K, Muta H and Yamanaka S 2005 J. Alloys Compd. 393 299
[22] Pei Y Z, Heinz N A and Snyder G J 2011 J. Mater. Chem. 21 18256
[23] Lin S Q, Li W, Li S S, Zhang X Y, Chen Z W, Xu Y D, Chen Y and Pei Y Z 2017 Joule 1 816
[24] Liu J Y, Chen L and Wu L M 2022 Nat. Commun. 13 2966
[25] Yang L, Chen Z G, Han G, Hong M, Zou Y C and Zou J 2015 Nano Energy 16 367
[26] Liu W D, Yang L, Chen Z G and Zou J 2020 Adv. Mater. 32 1905703
[27] Xiao X X, Xie W J, Tang X F and Zhang Q J 2011 Chin. Phys. B 20 087201
[28] Bhattacharya S, Bohra A, Basu R, Bhatt R, Ahmad S, Meshram K, Debnath A K, Singh A, Sarkar S K, Navneethan M, Hayakawa Y, Aswal D K and Gupta S K 2014 J. Mater. Chem. A 2 17122
[29] Tang M J, Chen Z Y, Guo X M, Zhang F J, Zhong Y, Liu H T, Kang B and Ang R 2020 ACS Appl. Mater. Interfaces 12 36347
[30] Maignan A, Guilmeau E, Gascoin F, Breard Y and Hardy 2012 Sci. Technol. Adv. Mater. 13 053003
[31] Engelsman F M R, Wiegers G A, Jellinek F and Van Laar B 1973 J. Solid State Chem. 6 574
[32] Van Der Lee A and Wiegers G A 1989 J. Solid State Chem. 82 216
[33] Gautam U K, Seshadri R, Vasudevan S and Maignan A 2002 Solid State Commun. 122 607
[34] Yano R and Sasagawa T 2016 Cryst. Growth Des. 16 5618
[35] Ding J X, Niedziela J L, Bansal D, Wang J L, He X, May A F, Ehlers G, Abernathy D L, Said A, Alatas A, Ren Y, Arya G and Delaire O 2020 Proc. Natl. Acad. Sci. USA 117 3930
[36] Wu D, Huang S Z, Feng D, Li B, Chen Y X, Zhang J and He J Q 2016 Phys. Chem. Chem. Phys. 18 23872
[37] Tang M J, Chen Z Y, Yin C, Lin L W, Ren D, Liu B, Kang B and Ang R 2020 Appl. Phys. Lett. 116 163901
[38] Pei Y Z, May A F and Snyder G J 2011 Adv. Energy Mater. 1 291
[39] Zhao W Y, Liu Z Y, Wei P, Zhang Q J, Zhu W T, Su X L, Tang X F, Yang J H, Liu Y, Shi J, Chao Y M, Lin S Q and Pei Y Z 2017 Nat. Nanotechnol. 12 55
[40] Tang M J, Li J, Wang Y D, Gong H J, Huang Y P, Kang B, Zhang K and Ang R 2021 Appl. Phys. Lett. 118 193902
[41] Lu M, Zhang X, Zhang Y, Guo J, Shen X Y, Yu W W and Rogach A L 2018 Adv. Mater. 30 1804691
[42] He F Q, Song E H, Zhou Y Y, Ming H, Chen Z T, Wu J C, Shao P S, Yang X F, Xia Z G and Zhang Q Y 2021 Adv. Funct. Mater. 31 2103743
[43] Ravichandran K, Nithiyadevi K, Gobalakrishnan S, Raman R G, Baneto M, Swaminathan K and Sakthivel B 2016 Mater. Technol. 31 865
[44] Cai J F, Yang J X, Liu G Q, Xu L, Wang X M, Hu H Y, Tan X J and Jiang J 2022 Adv. Energy Mater. 12 2103287
[45] Wei T R, Tan G J, Wu C F, Chang C, Zhao L D, Li J F, Snyder G J and Kanatzidis M G 2017 Appl. Phys. Lett. 110 053901
[46] Li W, Zhou B Q, Li J, Zhu S Y and Li J 2018 J. Alloys Compd. 753 93
[47] Zhou B Q, Li W, Wang X, Li J, Zheng L T, Gao B, Zhang X Y and Pei Y Z 2019 Sci. China Mater. 62 379
[48] Liu W D, Yang L, Chen Z G and Zou J 2020 Adv. Mater. 32 1905703
[49] Xie L, Wu D, Yang H L, Yu Y, Wang Y F and He J Q 2019 J. Mater. Chem. C 7 9263
[50] Wang C and Chen Y 2020 Npj Comput. Mater. 6 26
[1] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[2] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[3] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[4] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[5] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[6] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[7] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[8] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[9] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
[10] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[11] Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons
Chang-Ning Pan(潘长宁), Meng-Qiu Long(龙孟秋), Jun He(何军). Chin. Phys. B, 2018, 27(8): 088101.
[12] Thermoelectric properties of lower concentration K-doped Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Sen Chen(陈森), Dan Yan(闫丹), Jin-GuangYang(杨金光), Li Wang(王立), Xiu-Lan Huai(淮秀兰). Chin. Phys. B, 2018, 27(5): 057201.
[13] Enhanced thermoelectric properties of p-type polycrystalline SnSe by regulating the anisotropic crystal growth and Sn vacancy
Chengyan Liu(刘呈燕), Lei Miao(苗蕾), Xiaoyang Wang(王潇漾), Shaohai Wu(伍少海), Yanyan Zheng(郑岩岩), Ziyang Deng(邓梓阳), Yulian Chen(陈玉莲), Guiwen Wang(王桂文), Xiaoyuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047211.
[14] Enhanced thermoelectric performance in p-type Mg3Sb2 via lithium doping
Hao Wang(王浩), Jin Chen(陈进), Tianqi Lu(陆天奇), Kunjie Zhu(朱坤杰), Shan Li(李珊), Jun Liu(刘军), Huaizhou Zhao(赵怀周). Chin. Phys. B, 2018, 27(4): 047212.
[15] Graphene-enhanced thermoelectric properties of p-type skutterudites
Dandan Qin(秦丹丹), Yuan Liu(刘嫄), Xianfu Meng(孟宪福), Bo Cui(崔博), Yaya Qi(祁亚亚), Wei Cai(蔡伟), Jiehe Sui(隋解和). Chin. Phys. B, 2018, 27(4): 048402.
No Suggested Reading articles found!