Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 047901    DOI: 10.1088/1674-1056/ac904b

Effects of O2 adsorption on secondary electron emission properties

Zhao-Lun Yang(杨兆伦)1,2, Jing Yang(杨晶)2, Yun He(何鋆)2, Tian-Cun Hu(胡天存)2, Xin-Bo Wang(王新波)2, Na Zhang(张娜)2, Ze-Yu Chen(陈泽煜)2, Guang-Hui Miao(苗光辉)2, Yu-Ting Zhang(张雨婷)2, and Wan-Zhao Cui(崔万照)1,2,†
1 College of Aeronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2 National Key Laboratory of Science and Technology on Space Microwave, China Academy of Space Technology(Xi'an), Xi'an 710100, China
Abstract  The surface adsorption of gas molecules is a key factor limiting the secondary electron yield (SEY) of a material in many areas of applied physics. The influence of O2 adsorption on the SEY of metallic Ag is investigated in this work. To account for the particle distribution, we propose a BET theory based on multilayer O2 physisorption model. Furthermore, based on the phenomenological model of secondary electron (SE) emission and by taking into account the different scattering processes between electrons and particles in the adsorbed layer, we develop a numerical model of SEY in the adsorbed state using Monte Carlo simulations. The relationships among O2 adsorption, adsorption layer thickness, and SEY variation characteristics are then examined through a series of experiments. After 12-h exposure to O2, the clean samples increases 12%-19% of the maximum value of SEY and 2.3 nm in thickness of the adsorbed layer. Experimental results are also compared with the results from the MC model to determine whether the model is accurate.
Keywords:  multilayer adsorption model      secondary electron      Monte Carlo simulation      gas adsorption experiments  
Received:  25 July 2022      Revised:  29 August 2022      Accepted manuscript online:  08 September 2022
PACS:  79.20.Hx (Electron impact: secondary emission)  
  79.60.Dp (Adsorbed layers and thin films)  
Fund: Project supported by the Fund from the National Key Laboratory of Science and Technology on Space Mircrowave, China (Grant No. 6142411112205) and the National Natural Science Foundation of China (Grant No. 62001376).
Corresponding Authors:  Wan-Zhao Cui     E-mail:

Cite this article: 

Zhao-Lun Yang(杨兆伦), Jing Yang(杨晶), Yun He(何鋆), Tian-Cun Hu(胡天存), Xin-Bo Wang(王新波), Na Zhang(张娜), Ze-Yu Chen(陈泽煜), Guang-Hui Miao(苗光辉), Yu-Ting Zhang(张雨婷), and Wan-Zhao Cui(崔万照) Effects of O2 adsorption on secondary electron emission properties 2023 Chin. Phys. B 32 047901

[1] Tiras E, Dilsiz K, Ogul H, Southwick D, Bilki B, Wetzel J, Nachtman J, Onel Y and Winn D 2016 J. Inst. 11 10004
[2] Zuo C Y, Gao F and Dai Z L 2018 Acta Phys. Sin. 67 225201 (in Chinese)
[3] Vague J, Melgarejo J C, Guglielmi M, Boria V E, Anza S, Vicente C, Rocio M M, Mariam T, Benito G M and David R 2018 IEEE Trans. Microw. Theory Tech. 66 3644
[4] Wang Z Y, Luo Y, Cui W Z, Wei M, Liang P, J Huangfu, Chen H and Ran L 2009 Appl. Phys. Lett. 94 234101
[5] Mateo-Velez J C, Belhaj M, Dadouch S, Sarrailh P, Hess S L G and Payan D 2019 IEEE Trans. Plasma Sci. 47 3790
[6] Isabel Montero, Leandro Olano, Lydya Aguilera, María E, Dávila, Ulrich Wochner, David Raboso and Petronilo Martín-Iglesias 2020 J. Electron. Spectrosc. Relat. Phenom. 241 146822
[7] Hu J, Cao M, Li Y D, Lin S and Xia N 2018 Acta Phys. Sin. 67 177901 (in Chinese)
[8] Yamamoto K, Shibata T, Ogiwara N and Kinsho M 2007 Vacuum 81 788
[9] Kuzucan A, Herbert Stri and Taborelli M 2012 J. Vac. Sci. Technol. A 30 051401
[10] Cazaux J, Bozhko Y and Hilleret N 2005 Phys. Rev. B 71 035419
[11] Cazaux J 2010 Appl. Surf. Sci. 257 1002
[12] He Y, Shen T, Wang Q, Miao G H, Bai C J, Yu B, Yang J, Feng G B, Hu T C, Wang X B and Cui W Z 2020 Appl. Surf. Sci. 520 146320
[13] Hu X C, Zhang X W, Zhang R and Gu W P 2020 Results Phys. 19 103475
[14] Brunauer S, Emmett P H and Tell E 1938 J. Am. Chem Soc. 60 309
[15] Bai C J, Hu T C, He Y, Miao G H, Wang R, Zhang N and Cui W Z 2021 Chin. Phys. B 30 017901
[16] Cui W Z, Li Y, Zhang H T and Yang J 2022 Simulation Method of Multipactor and Its Application in Satellite Microwave Components pp. 23-56 ISBN: 9781003189794
[17] de Lara J, Perez F, Alfonseca M, Galan L, Montero I, Roman E, Baquero Garcia and D R 2006 IEEE Trans. Plasma Sci. 34 476
[18] Yukikazu Itikawa 2009 J. Phys. Chem. 38 1
[19] Jain A 1982 Phys. Rev. A 28 1829
[20] Zhang N, Cao M, Cui W Z and Zhang H B 2014 Chin. J. Vacuum Sci. Technol. 34 554
[21] Hu X C, Zhang H B, Cao M, Zhang N and Cui W Z 2014 Micron 64 52
[22] Baglin V, Collins I, Bernard Henrist, Nol Hilleret and Vorlaufer G 2001 Large Hadron Collider Projec Report, 2001, Geneva, August, report 427 Report number: CERN-LHC-Project-Report-472
[23] Li Y, Cui W Z and Wang H G 2015 Phys. Plasmas 22 053108
[24] Nistor V, González L A, Aguilera L, Montero I, Galán L, Wochner U and Raboso D 2014 Appl. Surf. Sci. 315 445
[25] Yang J, Cui W Z, Li Y, Zhang N, Wang R, Hu T C and Zhang H B 2016 Appl. Surf. Sci. 382 88
[1] Fragmentation dynamics of electron-impact double ionization of helium
Shiwei Liu(刘士炜), Difa Ye(叶地发), and Jie Liu(刘杰). Chin. Phys. B, 2023, 32(6): 063402.
[2] Secondary electron emission and photoemission from a negative electron affinity semiconductor with large mean escape depth of excited electrons
Ai-Gen Xie(谢爱根), Hong-Jie Dong(董红杰), and Yi-Fan Liu(刘亦凡). Chin. Phys. B, 2023, 32(4): 048102.
[3] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), and Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[4] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[5] Effect of Cu doping on the secondary electron yield of carbon films on Ag-plated aluminum alloy
Tiancun Hu(胡天存), Shukai Zhu(朱淑凯), Yanan Zhao(赵亚楠), Xuan Sun(孙璇), Jing Yang(杨晶), Yun He(何鋆), Xinbo Wang(王新波), Chunjiang Bai(白春江), He Bai(白鹤), Huan Wei(魏焕), Meng Cao(曹猛), Zhongqiang Hu(胡忠强), Ming Liu(刘明), and Wanzhao Cui(崔万照). Chin. Phys. B, 2022, 31(4): 047901.
[6] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[7] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[8] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[9] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[10] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[11] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[12] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[13] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[14] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[15] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
No Suggested Reading articles found!