Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 048101    DOI: 10.1088/1674-1056/ac80ad
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Resonant perfect absorption of molybdenum disulfide beyond the bandgap

Hao Yu(于昊)1, Ying Xie(谢颖)1,†, Jiahui Wei(魏佳辉)1, Peiqing Zhang(张培晴)1, Zhiying Cui(崔志英)2, and Haohai Yu(于浩海)3
1 Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo 315211, China;
2 Ningbo Yongxin Optics, Co., Ltd., Ningbo 315211, China;
3 State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
Abstract  Light absorption and radiation are fundamental processes in optical science and engineering. Materials with perfect absorption properties play an important role in numerous optical applications. Following the meteoric rise of MoS2 material, global opportunities and challenges coexist due to its extremely weak light-matter interaction capability beyond its energy band. In this work, we designed a kind of sandwich resonance structure and investigated MoS2 as a perfect absorber in the infrared spectrum that should be transparent according to the optical band theory. The infrared absorption properties of W or Au/MoS2/Au models at 800 nm-2400 nm were systematic simulated. By optimizing the structural parameters, the resonant wavelength of perfect absorption can be modulated from 830 nm to 1700 nm with angle insensitivity and polar independence. Moreover, we discovered that the bandwidth of absorption exceeding 50% of the W-top model reaches 500 nm, while that of the Au-top model is less than 100 nm, indicating that the top metal material has a great influence on the resonance absorption spectrum. Our work provides a practical route for enhancing and manipulating the light-matter interactions of low-dimensional materials beyond their own band gaps, which will be critical in the future design and implementation of optoelectronic devices and systems.
Keywords:  multilayer MoS2      Fabry-Perot structure      infrared absorption      resonance enhancement  
Received:  08 May 2022      Revised:  30 June 2022      Accepted manuscript online:  13 July 2022
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  02.70.Bf (Finite-difference methods)  
  33.20.Ea (Infrared spectra)  
  42.79.Ta (Optical computers, logic elements, interconnects, switches; neural networks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62105169), Natural Science Foundation of Ningbo (Grant No. 2021J078), and Special fund for Talents Project of Ningbo University (Grant No. 432094940).
Corresponding Authors:  Ying Xie     E-mail:  xieying@nbu.edu.cn

Cite this article: 

Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海) Resonant perfect absorption of molybdenum disulfide beyond the bandgap 2023 Chin. Phys. B 32 048101

[1] Qin M, Wang L, Zhai X, Chen D and Xia S 2017 Nanoscale Res. Lett. 12 1
[2] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[3] Zhao Z, Wang D, Gao H, Yang Z, Cao H and He W 2019 Dyes Pigment. 164 182
[4] McKagan S, Handley W, Perkins K and Wieman C 2009 Am. J. Phys. 77 87
[5] Fournier D, Boccara C, Skumanich A and Amer N M 1986 J. Appl. Phys. 59 787
[6] Balucinska-Church M and McCammon D 1992 Astrophys. J. 400 699
[7] Klassen S 2011 Sci. Educ. 20 719
[8] Long M, Wang P, Fang H and Hu W 2019 Adv. Funct. Mater. 29 1803807
[9] Miao J and Zhang F 2019 J. Mater. Chem. C. 7 1741
[10] Fang H and Hu W 2017 Adv. Sci. 4 1700323
[11] Wang C, Sweeney W R, Stone A D and Yang L 2021 Science 373 1261
[12] He H, Shang X, Xu L, Zhao J, Cai W, Wang J, Zhao C and Wang L 2020 Opt. Express 28 4563
[13] Xia F, Wang H, Xiao D, Dubey M and Ramasubramaniam A 2014 Nat. Photonics 8 899
[14] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[15] Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J and Zamora F 2011 Nanoscale 3 20
[16] Tan D, Lim H E, Wang F, Mohamed N B, Mouri S, Zhang W, Miyauchi Y, Ohfuchi M and Matsuda K 2017 Nano Research 10 546
[17] Yan Z, Zhu Q, Wan M, Lu X, Pu X, Tang C and Yu L 2020 Opt. Express 28 6095
[18] Li X and Zhu H 2015 J. Materiomics 1 33
[19] Bernardi M, Palummo M and Grossman J C 2013 Nano Lett. 13 3664
[20] Wang K, Wang J, Fan, Lotya M, O'Neill A, Fox D, Feng Y, Zhang X, Jiang B and Zhao Q 2013 ACS Nano 7 9260
[21] Qing Y M, Ma H F, Ren Y Z, Yu S and Cui T J 2019 Opt. Express 27 5253
[22] Xiao S, Wang T, Liu Y, Xu C, Han X and Yan X 2016 Phys. Chem. Chem. 18 26661
[23] Cai Y, Xu K D, Feng N, Guo R, Lin and Zhu J 2019 Opt. Express 27 3101
[24] Qing Y M, Ma H F and Cui T J 2018 Opt. Express 26 32442
[25] Robertson K W, Lota LaPierre R and Lota Krich J 2019 Opt. Express 27 A133
[26] Uddin M J and Magnusson R 2013 Opt. Express 21 12495
[27] Miyata M, Hatada H and Takahara J 2016 Nano Lett. 16 3166
[28] Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T and Morozov S V 2013 Science 340 1311
[29] Pei Y, Sang T, Mi Q, Wang J and Wang Y 2021 J. Opt. 24 024001
[30] Long L, Yang Y, Ye H and Wang L 2017 J. Quant. Spectrosc. Radiat. Transf. 200 198
[31] Cheng Z Q, Luo X, Xu L, Zhai X and Wang L L 2020 Opt. Express 28 14151
[32] Wang W, Klots A, Prasai D, Yang Y, Bolotin K I and Valentine J 2015 Nano Lett. 15 7440
[33] Xie Y, Liang F, Wang D, Chi S, Yu H, Lin Z, Zhang H, Chen Y, Wang J and Wu Y 2018 Adv. Mater. 30 1804858
[34] Xie Y, Zhang B, Wang S, Wang D, Wang A, Wang Z, Yu H, Zhang H, Chen Y and Zhao M 2017 Adv. Mater. 29 1605972
[35] Wang, Yu H, Zhang H, Wang A, Zhao M, Chen Y, Mei L and Wang J 2014 Adv. Mater. 26 3538
[36] Yao Y, Liao Z, Liu Z, Liu X, Zhou, Liu G, Yi Z and Wang J 2021 J. Phys. D: Appl. Phys. 54 113002
[37] Shu, Li Z and Xia Li Y 2013 Opt. Express 21 25307
[38] Huang W X, Zhao G R, Guo J J, Wang M S and Shi J P 2016 Chin. Phys. Lett. 33 088103
[39] Park C S and Lee S S 2021 ACS Appl. Nano Mater. 4 4216
[40] Tan J, Wu Z, Xu K, Meng Y, Jin G, Wang L and Wang Y 2020 Plasmonics 15 293
[41] Barnes W L 2006 J. Opt. A: Pure Appl. Opt. 8 S87
[1] Tuning infrared absorption in hyperbolic polaritons coated silk fibril composite
Lihong Shi(史丽弘) and Jiebin Peng(彭洁彬). Chin. Phys. B, 2022, 31(11): 114401.
[2] Discontinuous transition between Zundel and Eigen for H5O2+
Endong Wang(王恩栋), Beien Zhu(朱倍恩), Yi Gao(高嶷). Chin. Phys. B, 2020, 29(8): 083101.
[3] Laser-induced fabrication of highly branched CuS nanocrystals with excellent near-infrared absorption properties
Ruyu Yang(杨汝雨), Zhongyi Zhang(张中义), Linlin Xu(徐林林), Shuang Li(李爽), Yang Jiao(焦扬), Hua Zhang(张华), Ming Chen(陈明). Chin. Phys. B, 2017, 26(7): 076102.
[4] Spectroscopy system based on a single quantum cascade laser for simultaneous detection of CO and CO2
Min Wei(魏敏), Qing-Hao Ye(叶擎昊), Rui-Feng Kan(阚瑞峰), Bing Chen(陈兵), Chen-Guang Yang(杨晨光), Zhen-Yu Xu(许振宇), Xiang Chen(陈祥), Jun Ruan(阮俊), Xue-Li Fan(范雪丽), Wei Wang(王薇), Mai Hu(胡迈), Jian-Guo Liu(刘建国). Chin. Phys. B, 2016, 25(9): 094210.
[5] C–H complex defects and their influence in ZnO single crystal
Xie Hui (谢辉), Zhao You-Wen (赵有文), Liu Tong (刘彤), Dong Zhi-Yuan (董志远), Yang Jun (杨俊), Liu Jing-Ming (刘京明). Chin. Phys. B, 2015, 24(10): 107704.
[6] Deposition of hexagonal boron nitride thin films on silver nanoparticle substrates and surface enhanced infrared absorption
Deng Jin-Xiang (邓金祥), Chen Liang (陈亮), Man Chao (满超), Kong Le (孔乐), Cui Min (崔敏), Gao Xue-Fei (高学飞). Chin. Phys. B, 2014, 23(4): 047104.
[7] Residual compressive stress and intensity of infrared absorption of cubic BN films prepared by plasma enhanced chemical vapor deposition
Yang Hang-Sheng (杨杭生), Jin Pan-Pan (金盼盼), Xu Ya-Bo (徐亚伯), Li Hai-Yang (李海洋). Chin. Phys. B, 2014, 23(3): 037201.
[8] Computer study of the water–ammonia clusters formation and their dielectric properties
Alexander Galashev. Chin. Phys. B, 2013, 22(7): 073601.
[9] Selective excitation of molecular mode in a mixture by femtosecond resonance-enhanced coherent anti-Stokes Raman scattering spectroscopy
He Ping(贺平), Li Si-Ning(李思宁), Fan Rong-Wei(樊荣伟), Li Xiao-Hui(李晓晖), Xia Yuan-Qin(夏元钦), Yu Xin(于欣), and Chen De-Ying(陈德应) . Chin. Phys. B, 2012, 21(2): 027801.
No Suggested Reading articles found!