INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Secondary electron emission and photoemission from a negative electron affinity semiconductor with large mean escape depth of excited electrons |
Ai-Gen Xie(谢爱根)1,2,3,†, Hong-Jie Dong(董红杰)1, and Yi-Fan Liu(刘亦凡)1 |
1 School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; 2 Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science&Technology, Nanjing 210044, China; 3 Jiangsu international Joint Laboratory on Meteorological Photonics and Optoelectronic Detection, Nanjing University of Information Science&Technology, Nanjing 210044, China |
|
|
Abstract The formulae for parameters of a negative electron affinity semiconductor (NEAS) with large mean escape depth of secondary electrons $\lambda $ (NEASLD) are deduced. The methods for obtaining parameters such as $\lambda $, $B$, $E_{\rm pom}$ and the maximum $\delta $ and $\delta $ at 100.0 ${\rm keV} \ge E_{\rm po} \ge 1.0 $ keV of a NEASLD with the deduced formulae are presented ($B$ is the probability that an internal secondary electron escapes into the vacuum upon reaching the emission surface of the emitter, $\delta $ is the secondary electron yield, $ E_{\rm po}$ is the incident energy of primary electrons and $E_{\rm pom}$ is the $E_{\rm po}$ corresponding to the maximum $\delta $). The parameters obtained here are analyzed, and it can be concluded that several parameters of NEASLDs obtained by the methods presented here agree with those obtained by other authors. The relation between the secondary electron emission and photoemission from a NEAS with large mean escape depth of excited electrons is investigated, and it is concluded that the presented method of obtaining $\lambda $ is more accurate than that of obtaining the corresponding parameter for a NEAS with large $\lambda_{\rm ph}$ ($\lambda_{\rm ph}$ being the mean escape depth of photoelectrons), and that the presented method of calculating $B$ at $E_{\rm po} > 10.0 $ keV is more widely applicable for obtaining the corresponding parameters for a NEAS with large $\lambda_{\rm ph}$.
|
Received: 09 April 2022
Revised: 30 June 2022
Accepted manuscript online: 02 July 2022
|
PACS:
|
81.90.+c
|
(Other topics in materials science)
|
|
79.20.Hx
|
(Electron impact: secondary emission)
|
|
79.20.Ap
|
(Theory of impact phenomena; numerical simulation)
|
|
29.20.-c
|
(Accelerators)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11873013). |
Corresponding Authors:
Ai-Gen Xie
E-mail: xagth@126.com
|
Cite this article:
Ai-Gen Xie(谢爱根), Hong-Jie Dong(董红杰), and Yi-Fan Liu(刘亦凡) Secondary electron emission and photoemission from a negative electron affinity semiconductor with large mean escape depth of excited electrons 2023 Chin. Phys. B 32 048102
|
[1] Jin X L, Ji P U, Zhuge L J, et al. 2022 Chin. Phys. B 31 027901 [2] Wang D, He Y N, Guo J J, et al. 2021 J. Appl. Phys. 129 093304 [3] Yater J E and Shih A 2000 J. Appl. Phys. 87 8103 [4] Ghale P and Johnson H 2019 Phys. Rev. B 99 155405 [5] Carson M, Woods W, Reynolds S, et al. 2021 IEEE. T. Nucl. Sci. 68 292 [6] Yang Q, Shen J, Jiang H, et al. 2021 ACS Photonics 8 1027 [7] Alperovich V L, Kazantsev D M, Zhuravlev A G, et al. 2021 Appl. Surf. Sci. 561 149987 [8] Xie A G, Pan Z, Dong H J, et al. 2021 Results. Phys. 20 103745 [9] Morishita H, Ohshima T, Kuwahara M, et al. 2020 J. Appl. Phys. 127 164902 [10] Joshi M and Ghanty T K 2020 Phys. Chem. Chem. Phys. 22 13368 [11] Xie A G, Yu Y, Chen Y Y, et al. 2019 Surf. Rev. Lett. 26 1850181 [12] Liao L 2015 Research and design of microwave micro-pulse electron gun (Shanghai: Shanghai Institute of Applied Physics, Chinese Academy of Science) pp. 1-134 (in Chinese) [13] http://www.mc-set.com [14] Martinelli R U 1970 Appl. Phys. Lett. 17 313 [15] Martinelli R U and Schultz M L 1972 J. Appl. Phys. 43 4803 [16] Martinelli R U and Ettenberg M 1974 J. Appl. Phys. 45 3896 [17] Gutierrez W A, Pommerrenig H D and Holt S L 1972 Appl. Phys. Lett. 21 249 [18] Cazaux J 2001 J. Appl. Phys. 89 8265 [19] Cazaux J 2001 Polym. Int. 50 748 [20] Yang Z, Chang B K, Zou J J, et al. 2007 Appl. Optics. 46 7035 [21] Andre J P, Guittard P, Hallais J, et al. 1981 J. Cryst. Growth. 55 235 [22] Du X Q, Chang B K and Wang G H 2002 Adv. Mater and Dev for Sens and Imaging. 4919 83 [23] Konishi K, Akimoto I, Isberg J, et al. 2020 Phys. Rev. B 102 195204 [24] Zeiske S, Kaiser C, Meredith P, et al. 2020 ACS. Photonics. 7 256 [25] Zhuravlev A G, Khoroshilov V S and Alperovich V L 2017 JETP. Letters. 105 686 [26] Zhuravle A G, Khoroshilov V S and Alperovich V L 2019 Appl. Surf. Sci. 483 895 [27] https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html [28] Ono S and Kanaya K 1979 J. Phys. D: Appl. Phys. 12 619 [29] Kanaya K and Kawakatsu H 1972 J. Phys. D: Appl. Phys. 5 1727 [30] https://www.baidu.com [31] Xie A G, Zhang C Y and Zhong K 2014 Mod. Phys. Lett. B 28 1450046 [32] Xie A G, Dong H J and Pan Z 2021 Results. Phys. 28 104554 [33] Reuter W 1972 Proceedings of the Six International Conference on X-ray Optics and Microanalysis (Tokyo: Uinversity of Tokyo Press) pp. 121-130 [34] Xie A G, Li Q F, Chen Y Y, et al. 2013 Mod. Phys. Lett. B 27 1350238 [35] Reimer L and Drescher H 1977 J. Phys. D: Appl. Phys. 10 805 [36] Xie A G, Liu H Y, Yu Y, et al. 2018 Surf. Rev. Lett. 25 1850047 [37] Kanter H 1961 Phys. Rev. 121 461 [38] Xie A G, Zhao H F, Wang T B 2010 Nucl. Instrum. Methods. Phys. Res. B 268 687 [39] Seiler H 1983 J. Appl. Phys. 54 R1 [40] Bai C J, Hu T C, He Y, et al. 2021 Chin. Phys. B 30 17901 [41] Hu X C, Zhang X W, Zhang R, et al. 2020 Results. Phys. 19 103475 [42] Xie A G, Yu Y, Song C N, et al. 2019 Results. Phys. 15 102724 [43] Ling Z L and Wang X J 2013 Cathode Electronics, 1th edition (National defense industry Press) p. 192 [44] Fisher D G, Enstrom R E, Escher J S, et al. 1972 J. Appl. Phys. 43 3815 [45] Martinelli R U 1970 Appl. Phys. Lett. 16 261 [46] Xie A G, Pan Z and Chen Y Y 2020 Results. Phys. 18 103120 [47] Llacer J and Garwin E L 1969 J. Appl. Phys. 40 2766 [48] Alig R C and Bloom S 1978 J. Appl. Phys. 49 3476 [49] Adachi S 1989 J. Appl. Phys. 66 6030 [50] Rakić A D and Majewski M L 1996 J. Appl. Phys. 80 5909 [51] Ozaki S and Adachi S 1995 J. Appl. Phys. 78 3380 [52] Aspnes D E, Kelso S M, Logan R A, et al. 1986 J. Appl. Phys. 60 754 [53] Papatryfonos K, Angelova T, Brimont A, et al. 2021 AIP Adv. 11 025327 [54] Zhang Y J, Niu J, Zhao J, et al. 2010 J. Appl. Phys. 108 093108 [55] Zhang W L, Wang Y G, Wang S H, et al. 2021 Appl. Surf. Sci. 564 150419 [56] Bercx M, Partoens B and Lamoen D 2019 Phys. Rev. B 99 085413 [57] Ullah S, Wan G, Kouzios C, et al. 2021 Appl. Surf. Sci. 559 149962 [58] Yater J E and Shih A 2000 J. Appl. Phys. 87 8103 [59] Shih A, Yater J, Pehrsson P, et al. 1997 J. Appl. Phys. 82 1860 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|