Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 047901    DOI: 10.1088/1674-1056/ac322c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of Cu doping on the secondary electron yield of carbon films on Ag-plated aluminum alloy

Tiancun Hu(胡天存)1,2, Shukai Zhu(朱淑凯)3, Yanan Zhao(赵亚楠)3,†, Xuan Sun(孙璇)3, Jing Yang(杨晶)2, Yun He(何鋆)2, Xinbo Wang(王新波)2, Chunjiang Bai(白春江)2, He Bai(白鹤)2, Huan Wei(魏焕)2, Meng Cao(曹猛)1, Zhongqiang Hu(胡忠强)3, Ming Liu(刘明)3, and Wanzhao Cui(崔万照)2,‡
1 Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
2 National Key laboratory of Science and Technology on Space Microwave, China Academy of Space Technology(Xi'an), Xi'an 710100, China;
3 Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education&International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  Reducing the secondary electron yield (SEY) of Ag-plated aluminum alloy is important for high-power microwave components. In this work, Cu doped carbon films are prepared and the secondary electron emission characteristics are studied systematically. The secondary electron coefficient δmax of carbon films increases with the Cu contents increasing at first, and then decreases to 1.53 at a high doping ratio of 0.645. From the viewpoint of surface structure, the higher the content of Cu is, the rougher the surface is, since more cluster particles appear on the surface due to the small solid solubility of Cu in the amorphous carbon network. However, from viewpoint of the electronic structure, the reduction of the sp2 hybrid bonds will increase the SEY effect as the content of Cu increases, due to the decreasing probability of collision with free electrons. Thus, the two mechanisms would compete and coexist to affect the SEY characteristics in Cu doped carbon films.
Keywords:  copper-doped carbon      secondary electron yield      microwave devices      surface roughness  
Received:  08 September 2021      Revised:  12 October 2021      Accepted manuscript online:  22 October 2021
PACS:  79.20.Hx (Electron impact: secondary emission)  
Fund: This work was supported by the National Key Laboratory Foundation (Grant Nos. 2018SSFNKLSMT-04,614241101010117 and 6142411191110) and the National 111 Project of China (Grant No. B14040).
Corresponding Authors:  Yanan Zhao, Wanzhao Cui     E-mail:  zhaoyanan1984@xjtu.edu.cn;cuiwanzhao@126.com

Cite this article: 

Tiancun Hu(胡天存), Shukai Zhu(朱淑凯), Yanan Zhao(赵亚楠), Xuan Sun(孙璇), Jing Yang(杨晶), Yun He(何鋆), Xinbo Wang(王新波), Chunjiang Bai(白春江), He Bai(白鹤), Huan Wei(魏焕), Meng Cao(曹猛), Zhongqiang Hu(胡忠强), Ming Liu(刘明), and Wanzhao Cui(崔万照) Effect of Cu doping on the secondary electron yield of carbon films on Ag-plated aluminum alloy 2022 Chin. Phys. B 31 047901

[1] Xie A G, Xiao S R, Zhan Y and Zhao H F 2012 Chin. Phys. Lett. 29 117901
[2] Xie A G, Zhang J and Wang T B 2011 Chin. Phys. Lett. 28 097901
[3] Feng G B, Cui W Z, Zhang N, Cao M and Liu C L 2017 Chin. Phys. B 26 097901
[4] Wang H, Cao L H, Zhao Z Q, Yu M Y, Gu Y Q and He X T 2014 Chin. Phys. B 23 055202
[5] Montero I, Mohamed S H, Garcia M, Galan L and Raboso D 2007 J. Appl. Phys. 101 113306
[6] Miao G, Cui W, Zhang N, Yang J and Zhang H 2016 IEEE International Conference on High Voltage Engineering and Application (ICHVE)
[7] Lu Q, Yu B, Hu Z, He Y, Hu T, Zhao Y, Wang Z, Zhou Z, Cui W and Liu M 2020 Appl. Surf. Sci. 501 144236
[8] Ye M, Feng P, Wang D, Song B P, He Y N and Cui W Z 2019 Chin. Phys. B 28 077901
[9] Yun L, Wanzhao C, Zhang H T, Yin X S, Wang H G, Jianfeng Z and He Y N 2017 Chin. Space Sci. Technol. 37 73
[10] Dionne and Gerald F 1973 J. Appl. Phys. 44 5361
[11] Dionne G F 1975 J. Appl. Phys. 46 3347
[12] Wang X 2018 J. Mech. Engin. 54 115
[13] Zhang W, Zhang X, Fang F and Jiang J 2009 Chin. J. Vacuum Sci. Technol. 29 282
[14] Cui W Z, Li Y, Yang J, Hu T C, Wang X B, Wang R, Zhang N, Zhang H T and He Y N 2016 Chin. Phys. B 25 068401
[15] Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J and Cui W Z 2013 J. Appl. Phys. 113 124404
[16] Wang D, He Y and Cui W 2018 Surf. Technol. 47 9
[17] Ma J, Wei L, Bai Y, Bao Y, Kang Q, Zhang W, Cui W, Hu T and Wu D 2021 Thin Solid Films 725 138633
[18] Ye M, Ye Y, Wang R, Hu T, Zhang N, Yang J, Cui W and Zhang Z 2014 Acta Phys. Sin. 63 147901 (in Chinese)
[19] Bai C J, Feng G B, Cui W Z, He Y N, Zhang W, Hu S G, Ye M, Hu T C, Huang G S and Wang Q 2018 Acta Phys. Sin. 67 037902 (in Chinese)
[20] He Y, Yu B, Wang Q, Bai C, Yang J, Hu T, Xie B and Cui W 2018 Acta Phys. Sin. 67 087901 (in Chinese)
[21] Robertson J F R 2002 Mater. Sci. Engin. R 37 129
[22] Zhang Y X, Wang Y G, Wang S H, Wei W, Ge X Q, Zhu B L, Shao J Q and Wang Y 2020 Coatings 10 884
[23] Aijaz A, Sarakinos K, Lundin D, Brenning N and Helmersson U 2012 Diam. Relat. Mater. 23 1
[24] Ferrari A C and Robertson J 2004 Philos. Trans. A Math. Phys. Eng. 362 2477
[25] Toh C T, Zhang H, Lin J, Mayorov A S, Wang Y P, Orofeo C M, Ferry D B, Andersen H, Kakenov N, Guo Z, Abidi I H, Sims H, Suenaga K, Pantelides S T and Ozyilmaz B 2020 Nature 577 199
[26] Nguyen H K A, Mankowski J, Dickens J C, Neuber A A and Joshi R P 2018 AIP Adv. 8 015325
[27] Guo Q and Zhang J 2013 Guti Dianzixue Yanjiu Yu JinzhanResearch and Progress of Solid State Electronics 33 420 (in Chinese)
[28] Casiraghi C, Ferrari A C and Robertson J 2005 Phys. Rev. B 72 085401
[29] Ferrari A and Robertson J 2000 Phys. Rev. B 61 14095
[30] Caro M A, Deringer V L, Koskinen J, Laurila T and Csanyi G 2018 Phys. Rev. Lett. 120 166101
[1] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[2] High quality NbTiN films fabrication and rapid thermal annealing investigation
Huan Ge(葛欢), Yi-Rong Jin(金贻荣), Xiao-Hui Song(宋小会). Chin. Phys. B, 2019, 28(7): 077402.
[3] Secondary electron yield suppression using millimeter-scale pillar array and explanation of the abnormal yield-energy curve
Ming Ye(叶鸣), Peng Feng(冯鹏), Dan Wang(王丹), Bai-Peng Song(宋佰鹏), Yong-Ning He(贺永宁), Wan-Zhao Cui(崔万照). Chin. Phys. B, 2019, 28(7): 077901.
[4] A synthetic semi-empirical physical model of secondary electron yield of metals under E-beam irradiation
Guo-Bao Feng(封国宝), Wan-Zhao Cui(崔万照), Na Zhang(张娜), Meng Cao(曹猛), Chun-Liang Liu(刘纯亮). Chin. Phys. B, 2017, 26(9): 097901.
[5] Measurement and analysis of the surface roughness of Ag film used in plasmonic lithography
Gao-Feng Liang(梁高峰), Jiao Jiao(焦蛟), Xian-Gang Luo(罗先刚), Qing Zhao(赵青). Chin. Phys. B, 2017, 26(1): 016801.
[6] Lumped modeling with circuit elements for nonreciprocal magnetoelectric tunable band-pass filter
Xiao-Hong Li(李小红), Hao-Miao Zhou(周浩淼), Qiu-shi Zhang(张秋实), Wen-Wen Hu(胡文文). Chin. Phys. B, 2016, 25(11): 117505.
[7] Effect of inner-surface roughness of conical target on laser absorption and fast electron generation
Wang Huan (王欢), Cao Li-Hua (曹莉华), Zhao Zong-Qing (赵宗清), Yu Ming-Yang (郁明阳), Gu Yu-Qiu (谷渝秋), He Xian-Tu (贺贤土). Chin. Phys. B, 2014, 23(5): 055202.
[8] Ferromagnetic resonance frequency shift model of laminated magnetoelectric structure tuned by electric field
Zhou Hao-Miao (周浩淼), Chen Qing (陈晴), Deng Juan-Hu (邓娟湖). Chin. Phys. B, 2014, 23(4): 047502.
[9] Electron mobility limited by surface and interface roughness scatterings in AlxGa1-xN/GaN quantum wells
Wang Jian-Xia (王建霞), Yang Shao-Yan (杨少延), Wang Jun (王俊), Liu Gui-Peng (刘贵鹏), Li Zhi-Wei (李志伟), Li Hui-Jie (李辉杰), Jin Dong-Dong (金东东), Liu Xiang-Lin (刘祥林), Zhu Qin-Sheng (朱勤生), Wang Zhan-Guo (王占国). Chin. Phys. B, 2013, 22(7): 077305.
[10] The effects of strain and surface roughness scattering on the quasi-ballistic characteristics of a Ge nanowire p-channel field-effect transistor
Qin Jie-Yu (秦洁宇), Du Gang (杜刚), Liu Xiao-Yan (刘晓彦). Chin. Phys. B, 2013, 22(10): 107104.
[11] Three-dimensional Monte Carlo simulation of bulk fin field effect transistor
Wang Jun-Cheng (王骏成), Du Gang (杜刚), Wei Kang-Liang (魏康亮), Zhang Xing (张兴), Liu Xiao-Yan (刘晓彦 ). Chin. Phys. B, 2012, 21(11): 117308.
[12] Influence of Boron doping on microcrystalline silicon growth
Li Xin-Li(李新利), Chen Yong-Sheng(陈永生), Yang Shi-E(杨仕娥), Gu Jin-Hua(谷锦华), Lu Jing-Xiao(卢景霄), Gao Xiao-Yong(郜小勇), Li Rui(李瑞), Jiao Yue-Chao(焦岳超), Gao Hai-Bo(高海波), and Wang Guo(王果) . Chin. Phys. B, 2011, 20(9): 096801.
[13] Measurement of inner surface roughness of capillary by an x-ray reflectivity method
Li Yu-De(李玉德),Lin Xiao-Yan(林晓燕),Tan Zhi-Yuan(谭植元), Sun Tian-Xi(孙天希),and Liu Zhi-Guo(刘志国) . Chin. Phys. B, 2011, 20(4): 040702.
[14] The effect of surface roughness on rarefied gas flows by lattice Boltzmann method
Liu Chao-Feng (刘超峰), Ni Yu-Shan (倪玉山). Chin. Phys. B, 2008, 17(12): 4554-4561.
No Suggested Reading articles found!