Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 047102    DOI: 10.1088/1674-1056/acae75
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability

Yuanqi Jiang(蒋元祺)1,† and Ping Peng(彭平)2
1 College of Physics&Electronic Information, Nanchang Normal University, Nanchang 330032, China;
2 School of Material Science&Engineering, Hunan University, Changsha 410082, China
Abstract  A series of novel atomic structure of lowest-energy Fe$_{n}$P$_{13-n}$ ($n=0$-13) clusters via density functional theory (DFT) calculations and an unbiased structure search using Crystal structure AnaLYsis by Particle Swarm Optimization (CALYPSO) code. Our research results show that the global minimum geometry structure of neutral Fe$_{13-n}$P$_{n}$ ($n=0$-6) clusters tend to form cage structures but the lowest-energy Fe$_{13-n}$P$_{n}$ ($n=7$-13) clusters are gradually evolution from a cage structure to a chain shape geometric structure. Their geometric structure should responsible for the raise of binding energy from Fe$_{7}$P$_{6}$ to P$_{13}$ clusters rather than chemical components. This is completely different from a linear relation of the binding energy with chemical components in our previous research for Cu$_{n}$Zr$_{13-n}$ ($n=3$-10) clusters (J. Mol. Liq. 343 117603 (2021)). Hence, in order to characterize the global chemical stability of target cluster, we proposed a new parameter (${\rm jyq}=\eta /\chi $) that the chemical hardness of isolated cluster is used to be divided by its electronegativity. One of the biggest advantages of this parameter is successful coupling the ability of a resistance to redistribution of electrons and the ability to attract electrons from other system (such as atom, molecular or metallic clusters). Moreover, it is found that the P$_{13}$ cluster shows typical insulator characteristics but the Fe$_{12}$P$_{1}$ shows typical conductor characteristics, which phenomena can be attributed to the remarkable delocalized and localized electrons in Fe$_{12}$P$_{1}$ and P$_{13}$, respectively. In terms of nearly-free-electron mode, we also found that the number of electrons on Femi level ($N(E_{\rm F})$) are obviously tended to toward a lower value when Fe was replaced gradually with P from Fe$_{13}$ to P$_{13}$, and a non-magnetic can be observed in Fe$_{13}$, Fe$_{2}$P$_{11}$, Fe$_{1}$P$_{12}$, and P$_{13}$ that mainly because their perfect symmetrical between spin-up and spin-down of density of states of electrons.
Keywords:  Fe-P cluster      density functional theory (DFT)      ground-state structure      electronic structure  
Received:  05 November 2022      Revised:  18 December 2022      Accepted manuscript online:  27 December 2022
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  36.40.Mr (Spectroscopy and geometrical structure of clusters)  
  36.40.-c (Atomic and molecular clusters)  
  31.15.ae (Electronic structure and bonding characteristics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52263025 and 51871096), the Scientific Research Project of the Education Department of Jiangxi Province, China (Grant Nos. GJJ2202021 and GJJ2202011), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20202BAB204004 and 20171BAB216001), and the Qinglan Scholars Program and Scientific Research Project (Grant No. 22XJSK04) of Nanchang Normal University.
Corresponding Authors:  Yuanqi Jiang     E-mail:  yuanqi325@163.com

Cite this article: 

Yuanqi Jiang(蒋元祺) and Ping Peng(彭平) Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability 2023 Chin. Phys. B 32 047102

[1] Jena P and Sun Q 2018 Chem. Rev. 118 5755
[2] Zhao J, Du Q, Zhou S and Kumar V 2020 Chem. Rev. 120 9021
[3] Lee M S and Kanhere D G 2007 Phys. Rev. B. 75 125427
[4] Sosso G C, Chen J, Cox S J, Fitzner M, Pedevilla P and Zen A 2016 Chem. Rev. 116 7078
[5] He Y, Yi P and Falk M 2019 Phys. Rev. Lett. 122 035501
[6] Cheng Y and Ma E 2011 Prog. Mater. Sci. 56 379
[7] Lv J, Wang Y, Zhu L and Ma Y 2012 J. Chem. Phys. 137 084104
[8] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B. 82 094116
[9] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[10] Zhang J, Liu H, Ma Y and Chen C 2022 Natl. Sci. Rev. 9 nwab168
[11] Sun Y, Liu H and Ma Y 2021 Acta. Phys. Sin. 70 017407 (in Chinese)
[12] Sun Y, Lv J, Xie Y, Liu H and Ma Y 2019 Phys. Rev. Lett. 123 097001
[13] Cui W W and Li Y W 2019 Chin. Phys. B 28 107104
[14] Jiang Y Q and Peng P 2020 Chin. Phys. B. 29 046105
[15] Jiang Y Q, Peng P, Wen D D, Han S C and Hou Z Y 2015 Comp. Mater. Sci. 99 156
[16] Jiang Y, Lv J, He W and Peng P 2021 J. Mol. Liq. 343 117603
[17] Shi J, Cui W, Hao J, Xu M, Wang X and Li Y 2020 Nat. Commun. 11 3164
[18] Delley B 1990 J. Chem. Phys. 92 508
[19] Delley B 2000 J. Chem. Phys. 113 7756
[20] Ernzerhof M and Scuseria G E 1999 J. Chem. Phys. 110 5029
[21] John P, Perdew K B and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Bobadova-Parvanova P, Jackson K A, Srinivas S and Horoi M 2002 Phys. Rev. B 66 195402
[23] Pearson R G 1986 Proc. Nati. Acad. Sci. 83 8440
[24] Parr R G and Zhou Z 1993 Acc. Chem. Res. 26 256
[25] Pearson R G 2005 J. Chem. Sci. 117 369
[26] Nagel S R and Tauc J 1975 Phys. Rev. Lett. 35 380
[27] Li Ji, Cheng X and Zhang H 2022 Chin. Phys. B 31 097101
[28] Fu C, Huang J, Jiang Y and Li H 2022 J. Phys. Chem. Lett. 13 6644
[29] Mulliken R S 1955 J. Chem. Phys. 23 1841
[30] Segall M D, Shah R, Pickard C J and Payne M C 1996 Phys. Rev. B 54 16317
[1] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[4] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[5] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[6] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[7] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[8] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[9] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[10] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[11] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[14] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[15] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
No Suggested Reading articles found!