CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal |
Wenyu Xiang(相文雨)1, Yaping Wang(王亚萍)2, Weixiao Ji(纪维霄)1, Wenjie Hou(侯文杰)3, Shengshi Li(李胜世)1,†, and Peiji Wang(王培吉)1 |
1 Spintronics Institute, School of Physics and Technology, University of Jinan, Jinan 250022, China; 2 State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China; 3 School of Computer Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China |
|
|
Abstract Searching for one-dimensional (1D) nanostructure with ferromagnetic (FM) half-metallicity is of significance for the development of miniature spintronic devices. Here, based on the first-principles calculations, we propose that the 1D CrN nanostructure is a FM half-metal, which can generate the fully spin-polarized current. The ab initio molecular dynamic simulation and the phonon spectrum calculation demonstrate that the 1D CrN nanostructure is thermodynamically stable. The partially occupied Cr-d orbitals endow the nanostructure with FM half-metallicity, in which the half-metallic gap (Δs) reaches up to 1.58 eV. The ferromagnetism in the nanostructure is attributed to the superexchange interaction between the magnetic Cr atoms, and a sizable magnetocrystalline anisotropy energy (MAE) is obtained. Moreover, the transverse stretching of nanostructure can effectively modulate Δs and MAE, accompanied by the preservation of half-metallicity. A nanocable is designed by encapsulating the CrN nanostructure with a BN nanotube, and the intriguing magnetic and electronic properties of the nanostructure are retained. These novel characteristics render the 1D CrN nanostructure as a compelling candidate for exploiting high-performance spintronic devices.
|
Received: 19 September 2022
Revised: 23 December 2022
Accepted manuscript online: 11 January 2023
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004137, 62071200, and 12104236), and Shandong Provincial Natural Science Foundation of China (Grant Nos. ZR2020QA052, ZR2020ZD28, ZR2021MA040, and ZR2021MA060). |
Corresponding Authors:
Shengshi Li
E-mail: sdy_liss@ujn.edu.cn
|
Cite this article:
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉) Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal 2023 Chin. Phys. B 32 037103
|
[1] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323 [2] Fert A 2008 Rev. Mod. Phys. 80 1517 [3] Pickett W E and Moodera J S 2001 Phys. Today 54 39 [4] Xiang H, Yang J, Hou J G and Zhu Q 2006 J. Am. Chem. Soc. 128 2310 [5] de Groot R A, Muller F M, van Engen P G and Bushow K H J 1983 Phys. Rev. Lett. 50 2024 [6] Park J H, Vescovo E, Kim H J, Kwon C, Ramesh R and Venkatesan T 1998 Nature 392 794 [7] Mallajosyula S S and Pati S K 2007 J. Phys. Chem. B 111 13877 [8] Ashton M, Gluhovic D, Sinnott S B, Guo J, Stewart D A and Hennig R G 2017 Nano Lett. 17 5251 [9] Wu Q, Zhang Y, Zhou Q, Wang J and Zeng X C 2018 J. Phys. Chem. Lett. 9 4260 [10] Liu Z, Liu J and Zhao J 2017 Nano Res. 10 1977 [11] Zhang X, Wang B, Guo Y, Zhang Y, Chen Y and Wang J 2019 Nanoscale Horiz. 4 859 [12] Kan E, Li Z, Yang J and Hou J G 2008 J. Am. Chem. Soc. 130 4224 [13] Dutta S, Manna A K and Pati S K 2009 Phys. Rev. Lett. 102 096601 [14] Cao T, Li Z and Louie S G 2015 Phys. Rev. Lett. 114 236602 [15] Jiang P, Kang L, Zheng X, Zeng Z and Sanvito S 2020 Phys. Rev. B 102 195408 [16] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347 [17] Tang C, Zhang L, Sanvito S and Du A 2020 J. Mater. Chem. C 8 7034 [18] Garnett E, Mai L and Yang P 2019 Chem. Rev. 119 8955 [19] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F and Yan H 2003 Adv. Mater. 15 353 [20] Qu Y, Arguilla M Q, Zhang Q, He X and Dinca M 2021 J. Am. Chem. Soc. 143 19551 [21] Fu L, Shang C, Zhou S, Guo Y and Zhao J 2022 Appl. Phys. Lett. 120 163102 [22] Li X, Lv H, Dai J, Ma L, Zeng X C, Wu X and Yang J 2017 J. Am. Chem. Soc. 139 6290 [23] Kumar S, Kumawat R L and Pathak B 2019 J. Phys. Chem. C 123 15717 [24] Li S S, Wang Y P, Hu S J, Chen D, Zhang C W and Yan S S 2018 Nanoscale 10 15545 [25] Zhang J, Fu C, Song S, Du H, Zhao D, Huang H, Zhang L, Guan J, Zhang Y, Zhao X, Ma C, Jia C L and Tomanek D 2020 Nano Lett. 20 1280 [26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [27] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [29] Grimme S 2006 J. Comput. Chem. 27 1787 [30] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 [31] Anisimov V I, Zaanen J and Andersen O K 1991 Phys. Rev. B 44 943 [32] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 [33] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 [34] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104 [35] Grimme S, Ehrlich S and Goerigk L 2011 J. Comput. Chem. 32 1456 [36] Ozaki T, Nishio K and Kino H 2010 Phys. Rev. B 81 035116 [37] Ozaki T 2007 Phys. Rev. B 75 035123 [38] Kanamori J 1960 J. Appl. Phys. 31 S14 [39] Goodenough J B 1955 Phys. Rev. 100 564 [40] Anderson P W 1959 Phys. Rev. 115 2 [41] Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 [42] Chen Y C, Hsu S H, Kaun C C and Lin M T 2014 J. Phys. Chem. C 118 21199 [43] Zhou B, Yang B, Ng M F, Sullivan B M, Tan B C V and Shen L 2018 J. Am. Chem. Soc. 130 4023 [44] Zhu S, Fu H, Gao G, Wang S, Ni Y and Yao K 2013 J. Chem. Phys. 139 024309 [45] Hu J, Xiong W, Huang P, Wang Y, Cai C and Wang J 2020 Appl. Surf. Sci. 528 146957 [46] Hu Y, Li S S, Ji W X, Zhang C W, Ding M, Wang P J and Yan S S 2020 J. Phys. Chem. Lett. 11 485 [47] Miyano R, Kimura K, Izumi K, Takikawa H and Sakakibara T 2000 Vacuum 59 159 [48] Jin Q, Cheng H, Wang Z, et al. 2021 Adv. Mater. 33 2005920 [49] Jin Q, Wang Z, Zhang Q, Zhao J, Cheng H, Lin S, Chen S, Chen S, Guo H, He M, Ge C, Wang C, Wang J O, Gu L, Wang S, Yang H, Jin K L and Guo E J 2021 Phys. Rev. Mater. 5 023604 [50] Jin Q, Zhao J, Roldan M A, Qi W, Lin S, Chen S, Hong H, Fan Y, Rong D, Guo H, Ge C, Wang C, Wang J O, Wang S, Jin K J and Guo E J 2022 Appl. Phys. Lett. 120 073103 [51] Meng C, Yang L, Wu Y, Tan J, Dang W, He X and Ma X 2019 J. Nucl. Mater. 515 354 [52] Zhang M, Li M K, Kim K H and Pan F 2009 Appl. Surf. Sci. 255 9200 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|