Observation of size-dependent boundary effects in non-Hermitian electric circuits
Luhong Su(苏鹭红)1,2, Cui-Xian Guo(郭翠仙)1,†, Yongliang Wang(王永良)3, Li Li(李力)1,2, Xinhui Ruan(阮馨慧)1,4, Yanjing Du(杜燕京)1,5, Shu Chen(陈澍)1,6,7, and Dongning Zheng(郑东宁)1,6,8,‡
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 CAS Center for Excellence in Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 4 Department of Automation, Tsinghua University, Beijing 100084, China; 5 China University of Geosciences, Beijing 100083, China; 6 CAS Center for Excellence in Topological Quantum Computation and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 7 The Yangtze River Delta Physics Research Center, Liyang 213300, China; 8 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract The non-Hermitian systems with the non-Hermitian skin effect(NHSE) are very sensitive to the imposed boundary conditions and lattice sizes, which lead to size-dependent non-Hermitian skin effects. Here, we report the experimental observation of NHSE with different boundary conditions and different lattice sizes in the unidirectional hopping model based on a circuit platform. The circuit admittance spectra and corresponding eigenstates are very sensitive to the presence of the boundary. Meanwhile, our experimental results show how the lattice sizes and boundary terms together affect the strength of NHSE. Therefore, our electric circuit provides a good platform to observe size-dependent boundary effects in non-Hermitian systems.
(Decoherence; open systems; quantum statistical methods)
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2017YFA0304300), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0303030001), the National Natural Science Foundation of China (Grant No. T2121001), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).
Luhong Su(苏鹭红), Cui-Xian Guo(郭翠仙), Yongliang Wang(王永良), Li Li(李力), Xinhui Ruan(阮馨慧), Yanjing Du(杜燕京), Shu Chen(陈澍), and Dongning Zheng(郑东宁) Observation of size-dependent boundary effects in non-Hermitian electric circuits 2023 Chin. Phys. B 32 038401
[1] Yao S and Wang Z 2018 Phys. Rev. Lett.121 086803 [2] Lee T E 2016 Phys. Rev. Lett.116 133903 [3] Gong Z, Ashida Y, Kawabata K, et al. 2018 Phys. Rev. X8 031079 [4] Longhi S 2019 Phys. Rev. Res.1 023013 [5] Lee J, Ahn J, Zhou H, et al. 2019 Phys. Rev. Lett.123 206404 [6] Song F, Yao S and Wang Z 2019 Phys. Rev. Lett.123 246801 [7] Jiang H, Lang L J, Yang C, et al. 2019 Phys. Rev. B100 054301 [8] Lee C and Thomale R 2019 Phys. Rev. B99 201103 [9] Jin L and Song Z 2019 Phys. Rev. B99 081103 [10] Yang Z, Zhang K, Fang C, et al. 2020 Phys. Rev. Lett.125 226402 [11] Borgnia D S, Kruchkov A J and Slager R J 2020 Phys. Rev. Lett.124 056802 [12] Yuce C 2020 Phys. Rev. A102 032203 [13] Zhang K, Yang Z and Fang C 2020 Phys. Rev. Lett.125 126402 [14] Okuma N, Kawabata K, Shiozaki K, et al. 2020 Phys. Rev. Lett.124 086801 [15] Zhang X and Gong J 2020 Phys. Rev. B101 045415 [16] Wu H and An J H 2020 Phys. Rev. B102 041119 [17] Zhou L, Gu Y and Gong J 2021 Phys. Rev. B103 L041404 [18] Yuce C 2021 Phys. Lett. A408 127484 [19] Liu C H, Zhang K, Yang Z, et al. 2020 Phys. Rev. Res.2 043167 [20] Li L, Lee C H, Mu S, et al. 2020 Nat. Commun11 1 [21] Guo C X, Liu C H, Zhao X M, et al. 2021 Phys. Rev. Lett.127 116801 [22] Li L, Lee C and Gong J 2021 Commun. Phys.4 42 [23] Longhi S 2019 Ann. Phys.531 1900054 [24] Li J, Harter A K, Liu J, et al. 2019 Nat. Commun.10 855 [25] Wang S, Hou B, Lu W, et al. 2019 Nat. Commun.10 832 [26] Wu Y, Liu W, Geng J, et al. 2019 Science364 878 [27] Wang C, Sweeney W R, Stone A D, et al. 2021 Science373 1261 [28] Naghiloo M, Abbasi M, Joglekar Y N and Murch K W 2019 Nat. Phys.15 1232 [29] Zhu X, Wang H, Gupta S, et al. 2020 Phys. Rev. Res.2 013280 [30] Sebastian W, Mark K T H, et al. 2020 Science368 311 [31] Xiao L, Deng T S, Wang K, et al. 2020 Nature Phys.16 1 [32] Qi L, Wang G L, Liu S, et al. 2020 Phys. Rev. Appl.13 064016 [33] Li L, Lee C and Gong J 2020 Phys. Rev. Lett.124 250402 [34] Ghatak A, Brandenbourger M, van Wezel J and Coulais C 2020 Proc. Natl. Acad. Sci. USA117 29561 [35] Martin B, Xander L E L, et al. 2019 Nat. Commun.10 4608 [36] Yakir H, Jason C, Soric A B K, et al. 2018 Nat. Electron.1 178 [37] Liu S, Shao R, Ma S, et al. 2021 Research2021 [38] Helbig T, Hofmann S I, et al. 2020 Nature Phys.16 747 [39] Helbig T, Hofmann T, Lee C, et al. 2019 Phys. Rev. B99 161114 [40] Hofmann T, Helbig T, Schindler F, et al. 2020 Phys. Rev. Res.2 023265 [41] Ezawa M 2019 Phys. Rev. B99 121411 [42] Zhang Z Q, Wu B L, Song J, et al. 2019 Phys. Rev. B100 184202 [43] Albert V V, Glazman L I and Jiang L 2015 Phys. Rev. Lett.114 173902 [44] Imhof S, Berger C, et al. 2018 Nat. Phys.14 925 [45] Lu Y, Jia N, Su L, et al. 2019 Phys. Rev. B99 020302 [46] Jia N, Owens C, Sommer A, et al. 2015 Phys. Rev. X5 021031 [47] Wu F 2004 J. Phys. A Math. Gen.37 6653 [48] Schindler J, Lin Z, Lee J M, et al. 2012 J. Phys. A Math. Theor.45 444029 [49] Lang L J, Weng Y, Zhang Y, et al. 2021 Phys. Rev. B103 014302 [50] Lee C H, Stefan I, Christian B, et al. 2018 Commun. Phys.1
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.