Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 034209    DOI: 10.1088/1674-1056/ac7291
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Anti-symmetric sampled grating quantum cascade laser for mode selection

Qiangqiang Guo(郭强强)1,2, Jinchuan Zhang(张锦川)1,†, Fengmin Cheng(程凤敏)1,2, Ning Zhuo(卓宁)1, Shenqiang Zhai(翟慎强)1, Junqi Liu(刘俊岐)1,2, Lijun Wang(王利军)1,2, Shuman Liu(刘舒曼)1,2, and Fengqi Liu(刘峰奇)1,2,‡
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  For mode selection in a quantum cascade laser (QCL), we demonstrate an anti-symmetric sampled grating (ASG). The wavelength of the -1-th mode of this laser has been blue-shifted more than 75 nm (~ 10 cm-1) compared with that of an ordinary sampled grating laser with an emission wavelength of approximately 8.6 μm, when the periodicities within both the base grating and the sample grating are kept constant. Under this condition, an improvement in the continuous tuning capability of the QCL array is ensured. The ASG structure is fabricated in holographic exposure and optical photolithography, thereby enhancing its flexibility, repeatability, and cost-effectiveness. The wavelength modulation capability of the two channels of the grating is insensitive to the variations in channel size, assuming that the overall waveguide width remains constant. The output wavelength can be tailored freely within a certain range by adjusting the width of the ridge and the material of the cladding layer.
Keywords:  sample grating      tilted grating      quantum cascade laser      mode selection  
Received:  26 February 2022      Revised:  10 May 2022      Accepted manuscript online:  24 May 2022
PACS:  42.79.Dj (Gratings)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2021YFB3201900), in part by the National Natural Science Foundation of China (Grant Nos. 61991430, 61774146, 61790583, 61627822, and 61774150), in part by the Key Projects of the Chinese Academy of Sciences (Grant Nos. 2018147, YJKYYQ20190002, QYZDJ-SSW-JSC027, and XDB43000000).
Corresponding Authors:  Jinchuan Zhang, Fengqi Liu     E-mail:  zhangjinchuan@semi.ac.cn;fqliu@semi.ac.cn

Cite this article: 

Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇) Anti-symmetric sampled grating quantum cascade laser for mode selection 2023 Chin. Phys. B 32 034209

[1] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L and Cho A Y 1994 Science 264 553
[2] Gmachl C, Capasso F, Sivco D L and Cho A Y 2001 Rep. Prog. Phys. 64 1533
[3] Zhao Y, Yan F L, Zhang J C, Liu F Q, Zhuo N, Wang L J and Wang Z G 2017 J. Semicond. 38 074005
[4] Hou C C, Zhao Y, Zhang J C, Zhai S Q, Zhuo N, Liu J Q, Wang L J, Liu S M, Liu F Q and Wang Z G 2018 J. Semicond. 39 034001
[5] Fei T, Zhai S Q, Zhang J C, Zhuo N, Liu J Q, Wang L J, Liu S M, Jia Z W, Li K, Sun Y Q, Guo K, Liu F Q and Wang Z G 2021 J. Semicond. 42 112301
[6] Namjou K, Cai S, Whittaker E A, Faist J, Gmachl C, Capasso F, Sivco D L and Cho A Y 1998 Opt. Lett. 23 219
[7] Fuchs F, Hugger S, Kinzer M, Aidam R, Bronner W, Lösch R, Yang Q K, Degreif K A and Schnurer F H 2010 Opt. Engineer. 49 111127
[8] Curl R F, Capasso F, Gmachl C, Kosterev A A, McManus B, Lewicki R, Pusharsky M, Wysocki G and Tittel F K 2010 Chem. Phys. Lett. 487 1
[9] Guo Q Q, Zhang J C, Ning C, Zhuo N, Zhai S Q, Liu J Q, Wang L J, Liu S M, Jia Z W and Liu F Q 2022 ACS Photonics 9 1172
[10] Faist J, Gmachl C, Capasso F, Sirtori C, Sivco D L, Baillargeon J N and Cho A Y 1997 Appl. Phys. Lett. 70 2670
[11] Rauter P and Capasso F 2015 Laser Photo. Rev. 9 452
[12] Zhang J C, Liu F Q, Yao D Y, Zhuo N, Wang L J, Liu J Q and Wang Z G 2013 J. Appl. Phys. 113 153101
[13] Zhuo N, Zhang J, Liu F, Wang L, Tan S, Yan F, Liu J and Wang Z 2013 IEEE Photo. Tech. Lett. 25 1039
[14] Centeno R, Marchenko D, Mandon J, Cristescu S M, Wulterkens G and Harren F J M 2014 Appl. Phys. Lett. 105 261907
[15] Liu C W, Zhang J C, Yan F L, Jia Z W, Zhao Z B, Zhuo N, Liu F Q and Wang Z G 2017 Chin. Phys. Lett. 34 034209
[16] Slivken S, Bandyopadhyay N, Tsao S, Nida S, Bai Y, Lu Q Y and Razeghi M 2012 Appl. Phys. Lett. 100 261112
[17] Mansuripur T S, Menzel S, Blanchard R, Diehl L, Pflügl C, Huang Y, Ryou J, Dupuis R D Loncar M and Capasso F 2012 Opt. Exp. 20 23339
[18] Lee B G, Belkin M A, Pflugl C, Diehl L, Zhang H A, Audet R M, MacArthur J, Bour D, Corzine S, Hofler G and Capasso F 2009 IEEE J. Quant. Electr. 45 554
[19] Jia X F, Wang L J, Zhuo N, Zhang J C, Zhai S Q, Liu J Q, Liu S M, Liu F Q and Wang Z 2018 Photo. Res. 6 721
[20] Cheng F M, Jia Z W, Zhang J C, Zhuo N, Zhai S Q, Wang L J, Liu J Q, Liu S M, Liu F Q and Wang Z G 2017 Photo. Res. 5 320
[21] Zhao Y, Zhang J C, Jia Z W, Liu Y H, Zhuo N, Zhai S Q, Liu F Q and Wang Z G 2016 Chin. Phys. Lett. 33 124201
[22] Shi Y, Zhou Y, Li S, Guo R, Lu L, Feng Y and Chen X 2011 IEEE Photo. Tech. Lett. 23 1337
[23] Faist J 2013 Quant. Cascade Lasers (Oxford Univ. Press) p. 114
[1] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[2] Beam steering characteristics in high-power quantum-cascade lasers emitting at 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
[3] Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ~11.8 μm
Huan Wang(王欢), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Zeng-Hui Gu(顾增辉), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(12): 124202.
[4] Tunable characteristic of phase-locked quantum cascade laser arrays
Zeng-Hui Gu(顾增辉), Jin-Chuan Zhang(张锦川), Huan Wang(王欢), Peng-Chang Yang(杨鹏昌), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Jun-Qi Liu(刘俊岐), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Feng-Qi Liu(刘峰奇), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(10): 104201.
[5] Electron dynamics of active mode-locking terahertz quantum cascade laser
Qiushi Hou(侯秋实), Chang Wang(王长), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(12): 127302.
[6] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[7] Spectroscopy system based on a single quantum cascade laser for simultaneous detection of CO and CO2
Min Wei(魏敏), Qing-Hao Ye(叶擎昊), Rui-Feng Kan(阚瑞峰), Bing Chen(陈兵), Chen-Guang Yang(杨晨光), Zhen-Yu Xu(许振宇), Xiang Chen(陈祥), Jun Ruan(阮俊), Xue-Li Fan(范雪丽), Wei Wang(王薇), Mai Hu(胡迈), Jian-Guo Liu(刘建国). Chin. Phys. B, 2016, 25(9): 094210.
[8] High power-efficiency terahertz quantum cascade laser
Yuan-Yuan Li(李媛媛), Jun-Qi Liu(刘俊岐), Feng-Qi Liu(刘峰奇), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Zhan-Guo Wang(王占国). Chin. Phys. B, 2016, 25(8): 084206.
[9] A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure
Tao Jiang(江涛), Jun-Tao He(贺军涛), Jian-De Zhang(张建德), Zhi-Qiang Li(李志强), Jun-Pu Ling(令钧溥). Chin. Phys. B, 2016, 25(12): 125202.
[10] A high-power subterahertz surface wave oscillator with separated overmoded slow wave structures
Guang-Qiang Wang(王光强), Jian-Guo Wang(王建国), Peng Zeng(曾鹏), Dong-Yang Wang(王东阳), Shuang Li(李爽). Chin. Phys. B, 2016, 25(12): 128401.
[11] Mode analysis and design of 0.3-THz Clinotron
Shuang Li(李爽), Jian-Guo Wang(王建国), Guang-Qiang Wang(王光强), Peng Zeng(曾鹏), Dong-Yang Wang(王东阳). Chin. Phys. B, 2016, 25(10): 108401.
[12] An equivalent circuit model for terahertz quantumcascade lasers: Modeling and experiments
Yao Chen (姚辰), Xu Tian-Hong (徐天鸿), Wan Wen-Jian (万文坚), Zhu Yong-Hao (朱永浩), Cao Jun-Cheng (曹俊诚). Chin. Phys. B, 2015, 24(9): 094208.
[13] Frequency-locking and threshold current-lowering effects of a quantum cascade laser and an application in gas detection field
Chen Wei-Gen (陈伟根), Wan Fu (万福), Zou Jing-Xin (邹经鑫), Gu Zhao-Liang (顾朝亮), Zhou Qu (周渠). Chin. Phys. B, 2015, 24(2): 024206.
[14] Very low threshold operation of quantum cascade lasers
Yan Fang-Liang (闫方亮), Zhang Jin-Chuan (张锦川), Yao Dan-Yang (姚丹阳), Liu Feng-Qi (刘峰奇), Wang Li-Jun (王利军), Liu Jun-Qi (刘峻岐), Wang Zhan-Guo (王占国). Chin. Phys. B, 2015, 24(2): 024212.
[15] Material growth and device fabrication of terahertz quantum-cascade laser based on bound-to-continuum structure
Yin Rong (尹嵘), Wan Wen-Jian (万文坚), Zhang Zhen-Zhen (张真真), Tan Zhi-Yong (谭智勇), Cao Jun-Cheng (曹俊诚). Chin. Phys. B, 2014, 23(10): 104207.
No Suggested Reading articles found!