Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 125202    DOI: 10.1088/1674-1056/25/12/125202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure

Tao Jiang(江涛), Jun-Tao He(贺军涛), Jian-De Zhang(张建德), Zhi-Qiang Li(李志强), Jun-Pu Ling(令钧溥)
College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  

In order to enhance the power capacity, an improved Ku-band magnetically insulated transmission line oscillator (MILO) with overmoded slow-wave-structure (SWS) is proposed and investigated numerically and experimentally. The analysis of the dispersion relationship and the resonant curve of the cold test indicate that the device can operate at the near π mode of the TM01 mode, which is useful for mode selection and control. In the particle simulation, the improved Ku-band MILO generates a microwave with a power of 1.5 GW and a frequency of 12.3 GHz under an input voltage of 480 kV and input current of 42 kA. Finally, experimental investigation of the improved Ku-band MILO is carried out. A high-power microwave (HPM) with an average power of 800 MW, a frequency of 12.35 GHz, and pulse width of 35 ns is generated under a diode voltage of 500 kV and beam current of 43 kA. The consistency between the experimental and simulated far-field radiation pattern confirms that the operating mode of the improved Ku-band MILO is well controlled in π mode of the TM01 mode.

Keywords:  Ku-band      MILO      HPM      overmoded SWS      mode selection      particle simulation      experimental investigation  
Received:  11 July 2016      Revised:  08 August 2016      Accepted manuscript online: 
PACS:  52.59.-f (Intense particle beams and radiation sources)  
  52.65.Rr (Particle-in-cell method)  
  52.70.Gw (Radio-frequency and microwave measurements)  
Fund: 

Project supported partly by the National Natural Science Foundation of China (Grant No. 61171021).

Corresponding Authors:  Jian-De Zhang     E-mail:  jdzhang12@yahoo.com

Cite this article: 

Tao Jiang(江涛), Jun-Tao He(贺军涛), Jian-De Zhang(张建德), Zhi-Qiang Li(李志强), Jun-Pu Ling(令钧溥) A Ku-band magnetically insulated transmission line oscillator with overmoded slow-wave-structure 2016 Chin. Phys. B 25 125202

[1] Barker R J and Schanmiloglu E 2001 High Power Microwave Sources and Technologies (New York:IEEE Press)
[2] Benford J and Swegle J A 1991 High Power Microwaves (Artech House, Norwood, MA)
[3] Lemke R W, Calico S E and Clark M C 1997 IEEE Trans. Plasma Sci. 25 364
[4] Haworth M, Allen K, Baca G, Benford J, Englert T, Hackett K, Hendricks K, Henley D, Lemke R, Price D, Ralph D, Sena M, Shiffler D and Spencer T 1997 Proc. SPIE 3158 28
[5] Eastwood J W, Hawkins K C and Hook M P 1998 IEEE Trans. Plasma Sci. 26 698
[6] Lemke R W, Calico S E and Clark M C 1997 IEEE Trans. Plasma Sci. 25 364
[7] Cousin R, Larour J and Gardelle J 2007 IEEE Trans. Plasma Sci. 35 1467
[8] Zhang X P, Zhong H H and Yuan C W 2004 High Power Laser Particle Beams 15 80
[9] Fan Y W, Yuan C W, Zhong H H, Shu T and Luo L 2007 IEEE Trans. Plasma Sci. 35 379
[10] Fan Y W, Yuan C W and Zhong H H 2007 IEEE Trans. Plasma Sci. 35 1075
[11] Li Z Q, Zhong H H and Shu T 2009 Chin. Phys. Lett. 26 055201
[12] Li Z Q, Zhong H H and Shu T 2008 High Power Laser Particle Beams 20 123
[13] Chen D B, Fan Z K and Zhou H J 2007 High Power Laser Particle Beams 19 1352
[14] Fan Y W, Zhong H H, Li Z Q, Yuan C W, Shu T, Yang H W, Wang Y and Luo L 2011 IEEE Trans. Plasma Sci. 39 540
[15] Ju J C, Fan Y W, Zhong H H and Shu T 2009 Phys. Plasmas 16 073103
[16] Fan Y W, Zhong H H and Shu T 2008 Chin. Phys. B 17 1804
[17] Fan Y W, Zhong H H and Yang H W 2008 J. Appl. Phys. 103 123301
[18] Wen J, Tian Y C and Fan Z K 2011 High Power Laser Particle Beams 23 3047
[19] Wen J, Chen D B, Wang D and Qin F 2013 IEEE Trans. Plasma Sci. 41 2501
[20] Ling J P, Zhang J D, He J T and Jiang T 2014 Phys. Plasmas 21 023114
[21] Ling J P, Zhang J D, He J T, Wang L and Deng B F 2014 Rev. Sci. Instrum. 85 084702
[22] Zhang H, Shu T, Ju J C and Wu D P 2014 Phys. Plasmas 21 033105
[23] Zhang H, Shu T, Ju J C and Wu D P 2014 IEEE Trans. Plasma Sci. 42 6
[24] Zhang H, Shu T, Ju J C, Wu D P and Bai Z 2014 Rev. Sci. Instrum. 85 084701
[25] Jiang T, Zhang J D, He J T, Ju J C, Li Z Q and Ling J P 2015 IEEE Trans. Plasma Sci. 43 10
[26] Jiang T, Zhang J D, He J T, Li Z Q and Ling J P 2015 Phys. Plasmas 22 102112
[27] Zhang D, Zhang J, Zhong H H and Jin Z X 2013 Phys. Plasmas 20 073111
[28] Wu D P, Shu T, Zhu J, Zhang H and Ju J C 2014 Phys. Plasmas 21 073105
[29] Zhang X P, Dang F C, Zhang J, Fan Y W and Li Z Q 2015 Rev. Sci. Instrum. 86 024705
[30] Zhang X P, Zhong H H, Shu T, Yuan C W, Wang Y, Zhao Y S and Luo L 2005 High Power Laser Particle Beams 17 1129
[31] Qin F, Wang D, Chen D B and Fan Z K 2009 IEEE Trans. Plasma Sci. 37 10
[32] Pikunov V M and Chernyavskiy I A 2000 Proc. SPIE 4031 286
[1] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[2] A compact dual-band radiation system
Yuan-Qiang Yu(于元强), Yu-Wei Fan(樊玉伟), and Xiao-Yu Wang(王晓玉)$. Chin. Phys. B, 2020, 29(11): 118402.
[3] A hybrid mode of one- and two-surface multipactor on grooved dielectric surface
Li-Bing Cai(蔡利兵), Jian-Guo Wang(王建国), Guo-Xin Cheng(程国新), Xiang-Qin Zhu(朱湘琴). Chin. Phys. B, 2016, 25(2): 025203.
[4] A high-power subterahertz surface wave oscillator with separated overmoded slow wave structures
Guang-Qiang Wang(王光强), Jian-Guo Wang(王建国), Peng Zeng(曾鹏), Dong-Yang Wang(王东阳), Shuang Li(李爽). Chin. Phys. B, 2016, 25(12): 128401.
[5] Mode analysis and design of 0.3-THz Clinotron
Shuang Li(李爽), Jian-Guo Wang(王建国), Guang-Qiang Wang(王光强), Peng Zeng(曾鹏), Dong-Yang Wang(王东阳). Chin. Phys. B, 2016, 25(10): 108401.
[6] Quantum mechanical operator realization of the Stirling numbers theory studied by virtue of the operator Hermite polynomials method
Fan Hong-Yi (范洪义), Lou Sen-Yue (楼森岳). Chin. Phys. B, 2015, 24(7): 070305.
[7] A tunable magnetically insulated transmission line oscillator
Fan Yu-Wei (樊玉伟), Wang Xiao-Yu (王晓玉), He Liang (赫亮), Zhong Hui-Huang (钟辉煌), Zhang Jian-De (张建德). Chin. Phys. B, 2015, 24(3): 035203.
[8] Test particle simulations of resonant interactions between energetic electrons and discrete, multi-frequency artificial whistler waves in the plasmasphere
Chang Shan-Shan (常珊珊), Ni Bin-Bin (倪彬彬), Zhao Zheng-Yu (赵正予), Gu Xu-Dong (顾旭东), Zhou Chen (周晨). Chin. Phys. B, 2014, 23(8): 089401.
[9] Three-dimensional particle-in-cell method of simulating high power terahertz gyrotrons with planar structure
Chen Zai-Gao (陈再高), Wang Jian-Guo (王建国), Wang Yue (王玥), Qiao Hai-Liang (乔海亮), Guo Wei-Jie (郭伟杰), Zhang Dian-Hui (张殿辉). Chin. Phys. B, 2014, 23(6): 068402.
[10] Theoretical and numerical studies on a planar gyrotronwith transverse energy extraction
Chen Zai-Gao (陈再高), Wang Jian-Guo (王建国), Wang Yue (王玥). Chin. Phys. B, 2014, 23(10): 108401.
[11] Numerical study on the electron-wall interaction in a Hall thruster with segmented electrodes placed at the channel exit
Qing Shao-Wei (卿绍伟), E Peng (鄂鹏), Duan Ping (段萍), Xu Dian-Guo (徐殿国). Chin. Phys. B, 2013, 22(8): 085203.
[12] Investigation of an X-band magnetically insulated transmission line oscillator
Fan Yu-Wei(樊玉伟), Zhong Hui-Huang(钟辉煌), Li Zhi-Qiang(李志强), Shu Ting(舒挺), Yang Han-Wu(杨汉武), Yang Jian-Hua(杨建华), Wang Yong(王勇), Luo Ling(罗玲), and Zhao Yan-Song(赵延宋). Chin. Phys. B, 2008, 17(5): 1804-1808.
[13] Particle simulation on electron acceleration process by the laser ponderomotive force in inhomogeneous underdense plasma layers
Cao Li-Hua (曹莉华), Yu Wei (余玮), Xu Han (徐涵), Liu Zhan-Jun (刘占军), Zheng Chun-Yang (郑春阳), Li Bin (李斌). Chin. Phys. B, 2004, 13(8): 1302-1308.
No Suggested Reading articles found!