Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 124202    DOI: 10.1088/1674-1056/abf91a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ~11.8 μm

Huan Wang(王欢)1,2, Jin-Chuan Zhang(张锦川)1,†, Feng-Min Cheng(程凤敏)1,3, Zeng-Hui Gu(顾增辉)1,2, Ning Zhuo(卓宁)1, Shen-Qiang Zhai(翟慎强)1, Feng-Qi Liu(刘峰奇)1,2,3,‡, Jun-Qi Liu(刘俊岐)1,2, Shu-Man Liu(刘舒曼)1,2, and Zhan-Guo Wang(王占国)1,2
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  We demonstrate a broad gain, continuous-wave (CW) operation InP-based quantum cascade laser (QCL) emitting at 11.8 μm with a modified dual-upper-state (DAU) and diagonal transition active region design. A 3 mm cavity length, 16.5 μm average ridge wide QCL with high-reflection (HR) coatings demonstrates a maximum peak power of 1.07 W at 283 K and CW output power of 60 mW at 293 K. The device also shows a broad and dual-frequency lasing spectrum in pulsed mode and a maximum average power of 258.6 mW at 283 K. Moreover, the full width at half maximum (FWHM) of the electroluminescent spectrum measured at subthreshold current is 2.37 μm, which indicates a broad gain spectrum of the materials. The tuning range of 1.38 μm is obtained by a grating-coupled external cavity (EC) Littrow configuration, which is beneficial for gas detection.
Keywords:  dual-upper-state (DAU)      quantum cascade lasers      external cavity      gas detection  
Received:  12 March 2021      Revised:  07 April 2021      Accepted manuscript online:  19 April 2021
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  42.60.Pk (Continuous operation)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2018YFA0209103), the National Natural Science Foundation of China (Grant Nos. 61991430, 61774146, 61790583, 61734006, 61835011, 61674144, 61774150, and 61805168), Beijing Municipal Science & Technology Commission, China (Grant No. Z201100004020006), and the Key Projects of the Chinese Academy of Sciences (Grant Nos. 2018147, YJKYYQ20190002, QYZDJ-SSW-JSC027, XDB43000000, and ZDKYYQ20200006).
Corresponding Authors:  Jin-Chuan Zhang, Jin-Chuan Zhang     E-mail:  zhangjinchuan@semi.ac.cn;fqliu@semi.ac.cn

Cite this article: 

Huan Wang(王欢), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Zeng-Hui Gu(顾增辉), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国) Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ~11.8 μm 2021 Chin. Phys. B 30 124202

[1] Hodgkinson J and Tatam R P 2012 Meas. Sci. Technol. 24 012004
[2] Hugi A, Maulini R and Faist J 2010 Semicond. Sci. Technol. 25 083001
[3] Gmachl C, Sivco D L, Colombelli R, Capasso F and Cho A Y 2002 Nature 415 883
[4] Capasso F, Gmachl C, Paiella R, Tredicucci A, Hutchinson A L, Sivco D L, Baillargeon J N, Cho A Y and Liu H C 2000 IEEE J. Sel. Top. Quant. Electr. 6 931
[5] Figueiredo P, Suttinger M, Go R, Tsvid E, Patel C K N and Lyakh A 2017 Appl. Opt. 56 H15
[6] Xie F, C Caneau, Leblanc H P, Caffey D P, Hughes L C, Day T and Zah C 2013 IEEE J. Sel. Top. Quant. Electr. 19 1200407
[7] Huang X, Charles W O and Gmachl C 2011 Opt. Exp. 19 8297
[8] Troccoli M, Lyakh A, Fan J, Wang X J, Maulini R, Tsekoun A G, Rowel G, Kumar C and Patel N 2013 Opti. Mater. Exp. 3 1546
[9] Niu S Z, Liu J Q, Cheng F M, Wang H, Zhang J C, Zhuo N, Zhai S Q, Wang L J, Liu S M, Liu F Q, Wang Z G, Wang X H and Wei Z P 2019 Photo. Res. 7 1244
[10] Benveniste E, Vasanelli A, Delteil A, Devenson J, Teissie, R, Baranov A, Andrews M, Strasser G, Sagnes I and Sirtori C 2008 Appl. Phys. Lett. 93 131108
[11] Loghmari Z, Bahriz M, Meguekam A, Nguyen Van H, Teissie R and Baranov A N 2019 Appl. Phys. Lett. 115 151101
[12] Nguyen Van H, Loghmari Z, Philip H, Bahriz M, Baranov A N and Teissier R 2019 Photonics 6 31
[13] Botez D, Chang C C and Mawst L J 2015 Physica D 49 043001
[14] Slivken S, Evans A, Nguyen J, Bai Y, Sung P, Darvish S R, Zhang W and Razeghi M 2008 Proc. SPIE Quantum Sensing and Nanophotonic Devices V 6900 69000
[15] Dougakiuchi T, Fujita K, Sugiyama A, Ito A, Akikusa N and Edamura T 2014 Opt. Exp. 22 19930
[16] Chiu Y, Dikmelik Y, Liu P Q, Aung N L, Khurgin, J B and Gmachl C F 2012 Appl. Phys. Lett. 101 171117
[17] Fujita K, Hitaka M, Ito A, Yamanishi M, Dougakiuchi T and Edamura T 2016 Opt. Exp. 24 16357
[18] Fujita K, Edamura T, Furuta S and Yamanishi M 2010 Appl. Phys. Lett. 96 241107
[19] Sirtori C, Faist J, Capasso F, Sivco D L, Hutchinson A and Cho A Y 1995 Appl. Phys. Lett. 66 3242
[20] Wang H, Zhang J C, Cheng F M, Zhuo N, Zhai S Q, Wang L J, Liu S M, Liu F Q and Wang Z G 2020 Opt. Exp. 28 40155
[21] Mathonniére S, Tomko J, Matsuoka Y, Peters S, Kischkat J, Semtsiv M and Masselink W T 2018 Appl. Phys. B 124 1
[1] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[2] Beam steering characteristics in high-power quantum-cascade lasers emitting at 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
[3] Tunable characteristic of phase-locked quantum cascade laser arrays
Zeng-Hui Gu(顾增辉), Jin-Chuan Zhang(张锦川), Huan Wang(王欢), Peng-Chang Yang(杨鹏昌), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Jun-Qi Liu(刘俊岐), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Feng-Qi Liu(刘峰奇), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(10): 104201.
[4] Electron dynamics of active mode-locking terahertz quantum cascade laser
Qiushi Hou(侯秋实), Chang Wang(王长), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(12): 127302.
[5] Broad bandwidth interference filter-stabilized external cavity diode laser with narrow linewidth below 100 kHz
Guan-Zhong Pan(潘冠中), Bao-Lu Guan(关宝璐), Chen Xu(徐晨), Peng-Tao Li(李鹏涛), Jia-Wei Yang(杨嘉炜), Zhen-Yang Liu(刘振杨). Chin. Phys. B, 2018, 27(1): 014204.
[6] Spectroscopy system based on a single quantum cascade laser for simultaneous detection of CO and CO2
Min Wei(魏敏), Qing-Hao Ye(叶擎昊), Rui-Feng Kan(阚瑞峰), Bing Chen(陈兵), Chen-Guang Yang(杨晨光), Zhen-Yu Xu(许振宇), Xiang Chen(陈祥), Jun Ruan(阮俊), Xue-Li Fan(范雪丽), Wei Wang(王薇), Mai Hu(胡迈), Jian-Guo Liu(刘建国). Chin. Phys. B, 2016, 25(9): 094210.
[7] High power-efficiency terahertz quantum cascade laser
Yuan-Yuan Li(李媛媛), Jun-Qi Liu(刘俊岐), Feng-Qi Liu(刘峰奇), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Zhan-Guo Wang(王占国). Chin. Phys. B, 2016, 25(8): 084206.
[8] Wavelength-tunable prism-coupled external cavity passively mode-locked quantum-dot laser
Wu Yan-Hua (吴艳华), Wu Jian (吴剑), Jin Peng (金鹏), Wang Fei-Fei (王飞飞), Hu Fa-Jie (胡发杰), Wei Heng (魏恒), Wang Zhan-Guo (王占国). Chin. Phys. B, 2015, 24(6): 068103.
[9] Very low threshold operation of quantum cascade lasers
Yan Fang-Liang (闫方亮), Zhang Jin-Chuan (张锦川), Yao Dan-Yang (姚丹阳), Liu Feng-Qi (刘峰奇), Wang Li-Jun (王利军), Liu Jun-Qi (刘峻岐), Wang Zhan-Guo (王占国). Chin. Phys. B, 2015, 24(2): 024212.
[10] Broadband and high-speed swept external-cavity laser using a quantum-dot superluminescent diode as gain device
Hu Fa-Jie (胡发杰), Jin Peng (金鹏), Wu Yan-Hua (吴艳华), Wang Fei-Fei (王飞飞), Wei Heng (魏恒), Wang Zhan-Guo (王占国). Chin. Phys. B, 2015, 24(10): 104212.
[11] Material growth and device fabrication of terahertz quantum-cascade laser based on bound-to-continuum structure
Yin Rong (尹嵘), Wan Wen-Jian (万文坚), Zhang Zhen-Zhen (张真真), Tan Zhi-Yong (谭智勇), Cao Jun-Cheng (曹俊诚). Chin. Phys. B, 2014, 23(10): 104207.
[12] A grating-coupled external cavity InAs/InP quantum dot laser with 85-nm tuning range
Wei Heng (魏恒), Jin Peng (金鹏), Luo Shuai (罗帅), Ji Hai-Ming (季海铭), Yang Tao (杨涛), Li Xin-Kun (李新坤), Wu Jian (吴剑), An Qi (安琪), Wu Yan-Hua (吴艳华), Chen Hong-Mei (陈红梅), Wang Fei-Fei (王飞飞), Wu Ju (吴巨), Wang Zhan-Guo (王占国). Chin. Phys. B, 2013, 22(9): 094211.
[13] A 1550-nm linearly tunable CW single-mode external cavity diode laser based on a single-cavity all-dielectric thin-film Fabry–Pérot filter
Xiao Xiao (肖啸), Lu Yuan-Fu (鲁远甫), Yu Feng-Qi (于峰崎), Jin Lei (金雷). Chin. Phys. B, 2013, 22(7): 077802.
[14] A mode-locked external-cavity quantum-dot laser with a variable repetition rate
Wu Jian (吴剑), Jin Peng (金鹏), Li Xin-Kun (李新坤), Wei Heng (魏恒), Wu Yan-Hua (吴艳华), Wang Fei-Fei (王飞飞), Chen Hong-Mei (陈红梅), Wu Ju (吴巨), Wang Zhan-Guo (王占国). Chin. Phys. B, 2013, 22(10): 104206.
[15] Broadband tunable external cavity laser using a bent-waveguide quantum-dot superluminescent diode as gain device
Wu Jian(吴剑), Lü Xue-Qin(吕雪芹), Jin Peng(金鹏), Meng Xian-Quan(孟宪权), and Wang Zhan-Guo(王占国). Chin. Phys. B, 2011, 20(6): 064202.
No Suggested Reading articles found!