Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 108401    DOI: 10.1088/1674-1056/25/10/108401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Mode analysis and design of 0.3-THz Clinotron

Shuang Li(李爽)1,2, Jian-Guo Wang(王建国)1,2, Guang-Qiang Wang(王光强)2, Peng Zeng(曾鹏)2, Dong-Yang Wang(王东阳)2
1 Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China;
2 Laboratory on Science and Technology of High Power Microwave, Northwest Institute of Nuclear Technology, Xi'an 710024, China
Abstract  To develop a high-power continuous-wave terahertz source, a Clinotron operating at 0.3 THz is investigated. Based on the analyses of field distribution and coupling impedance, the dispersion characteristic of a rectangular resonator is preliminarily studied. The effective way to select fundamental mode to interact with the electron beam is especially studied. Finally, the structure is optimized by particle-in-cell simulation, and the problems of manufacture tolerance, current density threshold, and heat dissipation during Clinotron's operation are also discussed. The optimum device can work with a good performance under the conditions of 8 kV and 60 mA. With the generation of signal frequency at 315.89 GHz and output power at 12 W on average, this device shows great prospects in the application of terahertz waves.
Keywords:  terahertz      Clinotron      mode selection      particle simulation  
Received:  24 April 2016      Revised:  31 May 2016      Accepted manuscript online: 
PACS:  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
  45.10.Db (Variational and optimization methods)  
  52.65.-y (Plasma simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61231003).
Corresponding Authors:  Jian-Guo Wang     E-mail:  wanguiuc@mail.xjtu.edu.cn

Cite this article: 

Shuang Li(李爽), Jian-Guo Wang(王建国), Guang-Qiang Wang(王光强), Peng Zeng(曾鹏), Dong-Yang Wang(王东阳) Mode analysis and design of 0.3-THz Clinotron 2016 Chin. Phys. B 25 108401

[1] Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G, Park J and Temkin R J 2011 IEEE Trans. Terahertz Sci. Technol. 1 54
[2] Ren D and Feng J 2011 Vacuum Electronics 6 21
[3] Wang G Q, Wang J G, Tong C J, Li X Z, Wang X F, Li S and Lu X C 2013 Phys. Plasmas 20 043105
[4] Li X Z, Wang J G, Sun J, Song Z M, Ye H, Zhang Y C, Zhang L J and Zhang L G 2013 IEEE Trans. Electron Dev. 60 2931
[5] Zhang K C and Wu Z H 2013 Acta Phys. Sin. 62 024103 (in Chinese)
[6] Zhang K C, Qi Z K and Yang Z L 2015 Chin. Phys. B 24 079402
[7] Chen Z G, Wang J G, Wang Y, Qiao H L, Guo W J and Zhang D H 2014 Chin. Phys. B 23 068402
[8] Wang G Q, Wang J G, Li S, Wang X F, Lu X C and Song Z M 2015 Acta Phys. Sin. 64 050703 (in Chinese)
[9] Sattorov M, Khutoryan E, Lukin K, Kwon O and Park G S 2013 IEEE Trans. Electron Dev. 60 458
[10] Kim J I, Jeon S G, Kim G J, Kim J, Lopatin I V, Mil'cho M V and Tishchenko A S 2012 Proceedings of the 37th International Conference on Infrared, Millimeter, and Terahertz Waves, September 23-28, 2012, Wollongong, NSW, Australia
[11] Ponomarenko S S, Kishko S A, Zavertanniy V V, Khutoryan E M, Lopatin I V, Yefimov B P and Kuleshov A N 2013 IEEE Trans. Plasma Sci. 41 82
[12] Ponomarenko S, Kishko S, Khutoryan E, Tishenko A, Kuleshov A and Yefimov B P 2012 International Conference on Mathematical Methods in Electromagnetic Theory, August 28-30, 2012, Kyiv, Ukraine, pp. 348-352
[13] Vavriv D M, Volkov V A and Chumak V G 2007 Proceedings of the 37th European Microwave Conference, October, 2007, Munich, Germany, pp.826-829
[14] Zhang K Q and Li D Z 2001 Electromagnetic Theory for Microwaves and Optoelectronics, 2nd edn. (Beijing: Publishing House of Electronics Industry) pp. 423-426
[15] Lu Z G, Gong Y B, Wei Y Y and Wang W X 2006 Chin. Phys. 15 2661
[16] Mcvey B D Basten M A, Booske J H, Joe J and Scharer J E 1994 IEEE Trans. Microwave Theory Technol. 42 995
[17] Mineo M and Paoloni C 2010 IEEE Trans. Electron Dev. 57 1481
[18] Marshall E M, Walsh J E, Price E J and Jackson J A 1990 Int. J. Infrared and Millimeter Waves 11 1189
[19] Paoloni C, Mineo M and Carlo A D 2011 General Assembly and Scientific Symposium, August 13-20, 2011, Istanbul, Turkey
[20] Zaginaylov G I, Gandel Y V, Kamyshan O P, Kamyshan V V, Hirata A, Thumvongskul T and Shiozawa T 2002 IEEE Trans. Plasma Sci. 30 1151
[21] Milcho M V Yefimov B P Zavertanniy V V Goncharov V V 2016 Telecommunications and Radio Engineering 65 719
[22] Nusinovich G S and Bliokh Y P 2000 Phys. Plasmas 7 1294
[23] Li S, Wang J G, Teng Y, Wang G Q, Song Z M and Zeng P 2015 The 16th IEEE International Vacuum Electronics Conference, April 27-29, 2015, Beijing, China
[24] Vavriv D M 2008 Telecommunications and Radio Engineering 67 751
[25] Vavriv D M 2006 AIP Conf. Proc. 807 367
[26] Wang G Q, Wang J G, Lu X C, Li S and Zeng P 2015 Chin. J. Vac. Sci. Technol. 35 1059
[27] Wang J G, Zhang D H, Liu C L, Li Y D, Wang Y, Wang H G, Qiao H L and Li X Z 2009 Phys. Plasmas 16 033108
[28] Wang J G, Wang Y and Zhang D H 2006 IEEE Trans. Plasma Sci. 34 681
[29] Wang J G, Chen Z G, Wang Y, Zhang D H, Liu C L, Li Y D, Wang H G, Qiao H L, Fu M Y and Yuan Y 2010 Phys. Plasmas 17 073107
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[14] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[15] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
No Suggested Reading articles found!