Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 034211    DOI: 10.1088/1674-1056/abd6fe
RAPID COMMUNICATION Prev   Next  

Beam steering characteristics in high-power quantum-cascade lasers emitting at 4.6 μ m

Yong-Qiang Sun(孙永强)1,2, Jin-Chuan Zhang(张锦川)1,†, Feng-Min Cheng(程凤敏)1,3, Chao Ning(宁超)1,2, Ning Zhuo(卓宁)1, Shen-Qiang Zhai(翟慎强)1, Feng-Qi Liu(刘峰奇)1,2,3,‡, Jun-Qi Liu(刘俊岐)1,2, Shu-Man Liu(刘舒曼) 1,2, and Zhan-Guo Wang(王占国)1,2
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China; 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  A beam steering effect of high-power quantum cascade (QC) lasers emitting at ∼ 4.6 μ m was investigated. The continuous wave (CW) output power of an uncoated, 6-mm-long, 7.5-μ m-wide buried-heterostructure QC laser at 25 °C was as high as 854.2 mW. The maximum beam steering angle was offset by 14.2° from the facet normal (0°) in pulsed mode. The phenomenon was judged explicitly by combining the diffraction limit theory and Fourier transform of the spectra. It was also verified by finite element method software simulation and the calculation of two-dimensional (2D) effective-index model. The observed steering is consistent with a theory for coherence between the two lowest order lateral modes. Therefore, we have established an intrinsic linkage between the spectral instabilities and the beam steering by using the Fourier transform of the spectra, and further presented an extremely valid method to judge the beam steering. The content of this method includes both three equidistant peak positions in the Fourier transform of the spectra and the beam quality located between once the diffraction limit (DL) and twice the DL.
Keywords:  beam steering      quantum cascade lasers      fourier transform of the spectra      2D effective-index model  
Received:  26 October 2020      Revised:  16 December 2020      Accepted manuscript online:  28 December 2020
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  85.65.+h (Molecular electronic devices)  
  42.30.-d (Imaging and optical processing)  
  95.85.Hp (Infrared (3-10 μm))  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2018YFA0209103 and 2018YFB2200504), the National Natural Science Foundation of China (Grant Nos. 61991430, 61774146, 61790583, 61674144, and 61774150), and the Key Projects of the Chinese Academy of Sciences (Grant Nos. 2018147, YJKYYQ20190002, QYZDJ-SSW-JSC027, and XDB43000000).
Corresponding Authors:  Corresponding author. E-mail: zhangjinchuan@semi.ac.cn Corresponding author. E-mail: fqliu@semi.ac.cn   

Cite this article: 

Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国) Beam steering characteristics in high-power quantum-cascade lasers emitting at 4.6 μ m 2021 Chin. Phys. B 30 034211

1 Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L and Cho A Y 1994 Science 264 553
2 Bai Y, Darvish S R, Slivken S, Zhang W, Evans A, Nguyen J and Razeghi M 2008 Appl. Phys. Lett. 92 101105
3 Razeghi M, Slivken S, Bai Y, Gokden B and Darvish S R 2009 New J. Phys. 11 125017
4 Lyakh A, Maulini R, Tsekoun A, Go R, Pflugl C, Diehl L, Wang Q J, Capasso F and Patel C K N 2009 Appl. Phys. Lett. 95 141113
5 Bai Y, Bandyopadhyay N, Tsao S, Slivken S and Razeghi M 2011 Appl. Phys. Lett. 98 181102
6 Bewley W W, Lindle J R, Kim C S, Vurgaftman I, Meyer J R, Evans A J, Yu J S, Slivken S and Razeghi M 2005 IEEE J. Quantum Electron. 41 833
7 Yang Q, Kinzer M, Fuchs F, Hugger S, Hinkov B, Bronner W, L\"osch R, Aidam R and Wagner J 2012 Phys. Status Solidi (c) 9 302
8 Tholl H D, Wagner J, Rattunde M, Hugger S and Fuchs F 2010 SPIE Security + Defence, 12 October, 2010, Toulouse, France, 78360Q
9 Slivken S, Wu D H and Razeghi M 2017 Sci. Rep. 7 8472
10 Kinzer M, Fuchs F, Hugger S, Hinkov B, BronnerW, Loe-sch R, Aidam R, Yang Q K and Tholl H D 2010 SPIE Security + Defence, 12 October, 2010, Toulouse, France, 78360R
11 Lee S, Alexander J W and Gerry G O 2001 Photonics West 2001 - LASE, 20 June, 2001, San Jose, CA, United States, 4272
12 Yu N F, Diehl L, Cubukcu E, Bour D, Corzine S, Hofler, G, Wojcik A K, Crozier K B, Belyanin A and Capasso F 2009 Phys. Rev. Lett. 102 013901
13 Liu F Q, Li L, Wang L J, Liu J Q, Zhang W, Zhang Q D, Liu W F, Lu Q Y and Wang Z G 2009 Appl. Phys. A 97 527
14 Evans A, Darvish S R, Slivken S, Nguyen J, Bai Y and Razeghi M 2007 Appl. Phys. Lett. 91 071101
15 Schemmann M F C, van der Poel C J, van Bakel B A H, Ambrosius H P M M, Valater A, van den Heijkant J A M and Acket G A 1995 Appl. Phys. Lett. 66 920
16 Tan G L, Mand R S and Xu J M 1997 IEEE J. Quantum Electron. 33 1384
17 Guthrie J, Tan G L, Ohkubo M, Fukushima T, Ikegami Y, Ijichi T, Irikawa M, R. S. Mand R S and Xu J M 1994 IEEE Photon. Technol. Lett. 6 1409
[1] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[2] Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ~11.8 μm
Huan Wang(王欢), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Zeng-Hui Gu(顾增辉), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(12): 124202.
[3] Electron dynamics of active mode-locking terahertz quantum cascade laser
Qiushi Hou(侯秋实), Chang Wang(王长), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(12): 127302.
[4] Spectroscopy system based on a single quantum cascade laser for simultaneous detection of CO and CO2
Min Wei(魏敏), Qing-Hao Ye(叶擎昊), Rui-Feng Kan(阚瑞峰), Bing Chen(陈兵), Chen-Guang Yang(杨晨光), Zhen-Yu Xu(许振宇), Xiang Chen(陈祥), Jun Ruan(阮俊), Xue-Li Fan(范雪丽), Wei Wang(王薇), Mai Hu(胡迈), Jian-Guo Liu(刘建国). Chin. Phys. B, 2016, 25(9): 094210.
[5] High power-efficiency terahertz quantum cascade laser
Yuan-Yuan Li(李媛媛), Jun-Qi Liu(刘俊岐), Feng-Qi Liu(刘峰奇), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Zhan-Guo Wang(王占国). Chin. Phys. B, 2016, 25(8): 084206.
[6] Ultra-thin two-dimensional transmissive anisotropic metasurfaces for polarization filter and beam steering application
Wen-Long Guo(郭文龙), Guang-Ming Wang(王光明), Hai-Peng Li(李海鹏), Kun Zhang(张昆), Tong Cai(蔡通). Chin. Phys. B, 2016, 25(10): 104101.
[7] Very low threshold operation of quantum cascade lasers
Yan Fang-Liang (闫方亮), Zhang Jin-Chuan (张锦川), Yao Dan-Yang (姚丹阳), Liu Feng-Qi (刘峰奇), Wang Li-Jun (王利军), Liu Jun-Qi (刘峻岐), Wang Zhan-Guo (王占国). Chin. Phys. B, 2015, 24(2): 024212.
[8] Material growth and device fabrication of terahertz quantum-cascade laser based on bound-to-continuum structure
Yin Rong (尹嵘), Wan Wen-Jian (万文坚), Zhang Zhen-Zhen (张真真), Tan Zhi-Yong (谭智勇), Cao Jun-Cheng (曹俊诚). Chin. Phys. B, 2014, 23(10): 104207.
[9] Programmable agile beam steering based on a liquid crystal prism
Xu Lin(徐林), Huang Zi-Qiang(黄子强), and Yang Ruo-Fu(杨若夫) . Chin. Phys. B, 2011, 20(11): 114216.
No Suggested Reading articles found!