Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(2): 024206    DOI: 10.1088/1674-1056/24/2/024206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Frequency-locking and threshold current-lowering effects of a quantum cascade laser and an application in gas detection field

Chen Wei-Gen (陈伟根), Wan Fu (万福), Zou Jing-Xin (邹经鑫), Gu Zhao-Liang (顾朝亮), Zhou Qu (周渠)
State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing 400044, China
Abstract  In this paper, the frequency-locking and threshold current-lowering effects of a quantum cascade laser are studied and achieved. Combined with cavity-enhanced absorption spectroscopy, the noninvasive detection of H2 with a prepared concentration of 500 ppm in multiple dissolved gases is performed and evaluated. The high frequency selectivity of 0.0051 cm-1 at an acquisition time of 1 s allows the sensitive detection of the (1-0) S(1) band of H2 with a high accuracy of (96.53± 0.29)% and shows that the detection limit to an absorption line of 4712.9046 cm-1 is approximately (17.26± 0.63) ppm at an atmospheric pressure and a temperature of 20 ℃.
Keywords:  quantum cascade laser      frequency locking      threshold current lowering      cavity-enhanced absorption spectroscopy  
Received:  05 June 2014      Revised:  04 August 2014      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.15.Eq (Optical system design)  
  25.20.Dc (Photon absorption and scattering)  
Fund: Project supported by the Special Funds for the Development of National Major Scientific Instruments and Equipment, China (Grant No. 2012YQ160007) and the National Natural Science Foundation of China (Grant No. 51277185).
Corresponding Authors:  Wan Fu     E-mail:  wanfuhappy@163.com

Cite this article: 

Chen Wei-Gen (陈伟根), Wan Fu (万福), Zou Jing-Xin (邹经鑫), Gu Zhao-Liang (顾朝亮), Zhou Qu (周渠) Frequency-locking and threshold current-lowering effects of a quantum cascade laser and an application in gas detection field 2015 Chin. Phys. B 24 024206

[1] Ferrito S J and Road P 1990 IEEE Trans. Power Deliv. 5 220
[2] Frotscher R 2010 IEEE Electr. Insul. Mag. 26 22
[3] Duval M 2002 IEEE Electr. Insul. Mag. 18 8
[4] Khan I U, Wang Z and Cotton I 2007 IEEE Electr. Insul. Mag. 23 5
[5] Shintemirov A, Tang W and Wu Q H 2009 IEEE Trans. Syst. Man. Cybern. 39 69
[6] Su Q, Mi C, Lai L L and Austin P 2000 IEEE Trans. Power Syst. 15 593
[7] Saha T K 2003 IEEE Trans. Dielectr. Electr. Insul. 10 903
[8] Hartl A, Kuhlmann G, Wenig M, Chan K L, Ling L Y, Zheng N N, Qin M, Sun Y W, Xie P H and Liu W Q 2012 Chin. Phys. B 21 119301
[9] Wang Y, Li A, Xie P H, Zeng Y, Wang R B, Chen H, Pei X, Liu J G, and Liu W Q 2012 Chin. Phys. B 21 114211
[10] Shao J, Gao X M, Zhang W J, Yuan Y Q and Yang Y 2005 Chin. Phys. Lett. 22 57
[11] Shao J, Gao X M, Yang Y, Huang W, Pei S X, Yuan Y Q, Zhou S K and Zhang W J 2006 Chin. Phys. Lett. 23 213
[12] Xiang C P, Jin Y, Liu J T, Xu B Z, Wang W M, Wei X, Song G F and Xu Y 2014 Chin. Phys. B 23 038803
[13] Sheng L and Peng W 2009 Chin. Phys. B 18 3985
[14] Fan H Y and Zhan D H 2014 Chin. Phys. B 23 060301
[15] Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P, Chance K, Coudert L H, Dana V, Devi V M, Fally S, Flaud J M, Gamache R R, Goldman A, Jacquemart D, Kleiner I, Lacome N, Lafferty W J, Mandin J Y, Massie S T, Mikhailenko S N, Miller C E, Ahmadi N M, Naumenko O V, Nikitin A V, Orphal J, Perevalov V I, Perrin A, Cross A P, Rinsland C P, Rotger M, Šimečková M, Smith A H, Sung K, Tashkun S A, Tennyson J, Toth R A, Vandaele A C and Auwera J V 2009 J. Quant. Spectrosc. Radiat. Transf. 110 533
[16] Richter A F D 2002 Appl. Phys. B: Lasers Opt. 75 281
[17] Robie D C andHodges J T 2006 J. Chem. Phys. 124 024307
[18] Bragg S L, Brault J W and Smith W H 1982 Astrophys. J. 263 999
[19] Campargue A, Kassi S, Pachucki K and Komasa J 2011 Phys. Chem. Chem. Phys. 14 802
[20] Capasso F, Gmachl C, Member S, Paiella R, Tredicucci A, Hutchinson A L, Sivco D L, Baillargeon J N and Liu H C 2000 IEEE J. Quantum Electron. 6 931
[21] Dahmani B, Hollberg L and Drullinger R 1987 Opt. Lett. 12 876
[22] He Y and Orr B J 2000 Chem. Phys. Lett. 319 131
[23] Romanini D 1997 Chem. Phys. Lett. 264 316
[24] Agrawal G 1984 IEEE J. Quantum Electron. 20 468
[25] Yu Y, Giuliani G and Donati S 2004 IEEE Photon. Technol. Lett. 16 990
[26] Schunk N and Petermann K 1988 IEEE J. Quantum Electron. 24 1242
[27] Chraplyly A R 1986 J. Light Technol. 4 1655
[28] Morville J, Romanini D, Kachanov A and Chenevier M 2004 Appl. Phys. B: Lasers Opt. 78 465
[29] Gherman T and Romanini D 2002 Opt. Express 10 1033
[30] Osmundsen J H and Gade N 1983 IEEE J. Quantum Electron. 19 465
[31] Barlow G F and Shore K A 2001 IEE Proc. Optoelectron. 148 2
[32] Kojima C 1987 IEEE J. Quantum Electron. 23 839
[33] Carbajo P, Fasci E, Ventrillard I, Carras M, Maisons G and Romanini D 2013 Appl. Phys. B 110 309
[34] Fabre C, DeVoe R G and Brewer R G 1986 Opt. Lett. 11 365
[35] Pradhan M, Lindley R E, Grilli R, White I R, Martin D and Orr-Ewing A J 2007 Appl. Phys. B 90 1
[36] Morville J, Kassi S, Chenevier M and Romanini D 2005 Appl. Phys. B 80 1027
[37] Hamilton D J and Orr-Ewing A J 2011 Appl. Phys. B 102 879
[38] Courtillot I, Gonthiez Y, Clerici C and Romanini D 2009 J. Biomed. Opt. 14 064026
[39] Krzempek K, Lewicki R, Nähle L, Fischer M, Koeth J, Belahsene S, Rouillard Y, Worschech L and Tittel F K 2012 Appl. Phys. B 106 251
[1] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[2] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[3] Beam steering characteristics in high-power quantum-cascade lasers emitting at 4.6 μ m
Yong-Qiang Sun(孙永强), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Chao Ning(宁超), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(3): 034211.
[4] Broad gain, continuous-wave operation of InP-based quantum cascade laser at λ~11.8 μm
Huan Wang(王欢), Jin-Chuan Zhang(张锦川), Feng-Min Cheng(程凤敏), Zeng-Hui Gu(顾增辉), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Feng-Qi Liu(刘峰奇), Jun-Qi Liu(刘俊岐), Shu-Man Liu(刘舒曼), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(12): 124202.
[5] Tunable characteristic of phase-locked quantum cascade laser arrays
Zeng-Hui Gu(顾增辉), Jin-Chuan Zhang(张锦川), Huan Wang(王欢), Peng-Chang Yang(杨鹏昌), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Jun-Qi Liu(刘俊岐), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Feng-Qi Liu(刘峰奇), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(10): 104201.
[6] Electron dynamics of active mode-locking terahertz quantum cascade laser
Qiushi Hou(侯秋实), Chang Wang(王长), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(12): 127302.
[7] Atmospheric N2O gas detection based on an inter-band cascade laser around 3.939 μm
Chun-Yan Sun(孙春艳), Yuan Cao(曹渊), Jia-Jin Chen(陈家金), Jing-Jing Wang(王静静), Gang Cheng(程刚), Gui-Shi Wang(王贵师), Xiao-Ming Gao(高晓明). Chin. Phys. B, 2020, 29(1): 010704.
[8] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[9] Spectroscopy system based on a single quantum cascade laser for simultaneous detection of CO and CO2
Min Wei(魏敏), Qing-Hao Ye(叶擎昊), Rui-Feng Kan(阚瑞峰), Bing Chen(陈兵), Chen-Guang Yang(杨晨光), Zhen-Yu Xu(许振宇), Xiang Chen(陈祥), Jun Ruan(阮俊), Xue-Li Fan(范雪丽), Wei Wang(王薇), Mai Hu(胡迈), Jian-Guo Liu(刘建国). Chin. Phys. B, 2016, 25(9): 094210.
[10] High power-efficiency terahertz quantum cascade laser
Yuan-Yuan Li(李媛媛), Jun-Qi Liu(刘俊岐), Feng-Qi Liu(刘峰奇), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Zhan-Guo Wang(王占国). Chin. Phys. B, 2016, 25(8): 084206.
[11] An equivalent circuit model for terahertz quantumcascade lasers: Modeling and experiments
Yao Chen (姚辰), Xu Tian-Hong (徐天鸿), Wan Wen-Jian (万文坚), Zhu Yong-Hao (朱永浩), Cao Jun-Cheng (曹俊诚). Chin. Phys. B, 2015, 24(9): 094208.
[12] Very low threshold operation of quantum cascade lasers
Yan Fang-Liang (闫方亮), Zhang Jin-Chuan (张锦川), Yao Dan-Yang (姚丹阳), Liu Feng-Qi (刘峰奇), Wang Li-Jun (王利军), Liu Jun-Qi (刘峻岐), Wang Zhan-Guo (王占国). Chin. Phys. B, 2015, 24(2): 024212.
[13] Material growth and device fabrication of terahertz quantum-cascade laser based on bound-to-continuum structure
Yin Rong (尹嵘), Wan Wen-Jian (万文坚), Zhang Zhen-Zhen (张真真), Tan Zhi-Yong (谭智勇), Cao Jun-Cheng (曹俊诚). Chin. Phys. B, 2014, 23(10): 104207.
[14] Design of surface emitting distributed feedback quantum cascade laser with single-lobe far-field pattern and high outcoupling efficiency
Guo Wan-Hong(郭万红), Liu Jun-Qi(刘俊岐), Lu Quan-Yong(陆全勇), Zhang Wei(张伟), Li Lu(李路), Wang Li-Jun(王利军), Liu Feng-Qi(刘峰奇), and Wang Zhan-Guo(王占国). Chin. Phys. B, 2010, 19(5): 054208.
No Suggested Reading articles found!