Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 104207    DOI: 10.1088/1674-1056/23/10/104207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Material growth and device fabrication of terahertz quantum-cascade laser based on bound-to-continuum structure

Yin Rong (尹嵘), Wan Wen-Jian (万文坚), Zhang Zhen-Zhen (张真真), Tan Zhi-Yong (谭智勇), Cao Jun-Cheng (曹俊诚)
Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Abstract  The terahertz quantum-cascade laser (THz QCL) based on bound-to-continuum structure is demonstrated. The X-ray diffraction measurement of the material shows a high crystalline quality of the active region. A THz QCL device was fabricated with semi-insulating surface-plasmon waveguide. The test device is lasing at about 3 THz and operating up to 60 K. It shows a single frequency property under different drive currents and temperatures. At 9 K, the maximum output power is greater than 2 mW with a threshold current density of 159 A/cm2.
Keywords:  terahertz      quantum cascade lasers      bound-to-continuum      single mode  
Received:  17 May 2014      Revised:  28 May 2014      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  61.50.cp  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006 and 61321492), the Major National Development Project of Scientific Instrument and Equipment (Grant No. 2011YQ150021), the National Science and Technology Major Project (Grant No. 2011ZX02707), and the Major Project (Grant No. YYYJ-1123-1).
Corresponding Authors:  Cao Jun-Cheng     E-mail:  jccao@mail.sim.ac.cn
About author:  42.55.Px; 61.50.cp

Cite this article: 

Yin Rong (尹嵘), Wan Wen-Jian (万文坚), Zhang Zhen-Zhen (张真真), Tan Zhi-Yong (谭智勇), Cao Jun-Cheng (曹俊诚) Material growth and device fabrication of terahertz quantum-cascade laser based on bound-to-continuum structure 2014 Chin. Phys. B 23 104207

[1]Ma Y R, Guo S F and Duan S Q 2012 Chin. Phys. B 21 037804
[2]Fu A B, Hao M R, Yang Y, Shen W Z and Liu H C 2013 Chin. Phys. B 22 026803
[3]Kohler R, Tredicucci A, Beltram F, Beere H, Linfield E, Davies A, Ritchie D, Iotti R and Rossi F 2002 Nature 417 156
[4]Darmo J, Tamosiunas V, Fasching G, Kroll J, Unterrainer K, Beck M, Giovannini M, Faist J, Kremser C and Debbage P 2004 Opt. Express 12 1879
[5]Kohler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Dhillon S S and Sirtori C 2003 Appl. Phys. Lett. 82 1518
[6]Williams B S 2007 Nat. Photon. 1 517
[7]Liu H C, Wachter M, Ban D, Wasilewski Z R, Buchanan M, Aers G C, Cao J C, Feng S L, Williams B S and Hu Q 2005 Appl. Phys. Lett. 87 141102
[8]Barbieri S, Alton J, Beere H E, Fowler J, Linfield E H and Ritchie D A 2004 Appl. Phys. Lett. 85 1674
[9]Williams B S, Kumar S, Hu Q and Reno J L 2004 Electron. Lett. 40 431
[10]Williams B S, Kumar S, Hu Q and Reno J L 2005 Opt. Express 13 3331
[11]Fathololoumi S, Dupont E, Chan C W I, Wasilewski Z R, Laframboise S R, Ban D, Mátyás A, Jirauschek C, Hu Q and Liu H C 2012 Opt. Express 20 3866
[12]Amanti M, Scalari G, Terazzi R, Fischer M, Beck M, Faist J, Rudra A, Gallo P and Kapon E 2009 New J. Phys. 11 125022
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!