Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 034208    DOI: 10.1088/1674-1056/ac785e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect

Zhichao Zhang(张志超)1, Jinhui Yuan(苑金辉)1,2,†, Shi Qiu(邱石)1, Guiyao Zhou(周桂耀)3, Xian Zhou(周娴)2, Binbin Yan(颜玢玢)1, Qiang Wu(吴强)4,5,‡, Kuiru Wang(王葵如)1, and Xinzhu Sang(桑新柱)1
1 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Research Center for Convergence Networks and Ubiquitous Services, University of Science&Technology Beijing, Beijing 100083, China;
3 Guangzhou Key Laboratory for Special Fiber Photonic Devices, South China Normal University, Guangzhou 510006, China;
4 Department of Physics and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom;
5 Key Laboratory of Nondestructive Test(Ministry of Education), Nanchang Hong Kong University, Nanchang 330063, China
Abstract  A refractive index (RI) sensor based on the surface plasmon resonance effect is proposed using a truncated cladding negative curvature fiber (TC-NCF). The influences of the TC-NCF structure parameters on the sensing performances are investigated and compared with the traditional NCF. The simulation results show that the proposed TC-NCF RI sensor has an ultra-wide detection range from 1.16 to 1.43. The maximum wavelength sensitivity reaches 12400 nm/RIU, and the corresponding R2 of the polynomial fitting equation is 0.9999. The maximum and minimum resolutions are 2.56×10-5 and 8.06×10-6, respectively. In addition, the maximum amplitude sensitivity can reach -379.1 RIU-1 when the RI is chosen as 1.43. The proposed TC-NCF RI sensor could be useful in biochemical medicine, environmental monitoring, and food safety.
Keywords:  truncated cladding negative curvature fiber      refractive index sensor      surface plasmon resonance  
Received:  23 February 2022      Revised:  15 May 2022      Accepted manuscript online:  14 June 2022
PACS:  42.81.Pa (Sensors, gyros)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61935007).
Corresponding Authors:  Jinhui Yuan, Qiang Wu     E-mail:  yuanjinhui81@bupt.edu.cn;qiang.wu@northumbria.ac.uk

Cite this article: 

Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱) Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect 2023 Chin. Phys. B 32 034208

[1] Vincetti L and Setti V 2014 Opt. Express 18 23133
[2] Pryamikov A D, Biriukov A S and Kosolapov A F 2011 Opt. Express 19 1441
[3] Debord B, Alharbi M, Bradley T, Fourcade-Dutin C, Wang Y Y, Vincetti L, Gérôme F and Benabid B 2013 Opt. Express 21 28597
[4] Yu F, Wadsworth W J and Knight J C 2012 Opt. Express 20 11153
[5] Kolyadin A N, Kosolapov A F, Pryamikov A D, Biriukov A S, Plotnichenko V G and Dianov E M 2013 Opt. Express 21 9514
[6] Wei C, Weiblen R J, Menyuk C R and Jonathan H 2017 Adv. Opt. Photon. 9 504
[7] Wei C, Young J T, Menyuk C R and Jonathan H 2019 OSA Continuum. 2 2123
[8] Silva A A, Barea L, Spadoti D H and Francisco A C D 2019 Opt. Eng. 58 072011
[9] Ankan I M, Mollah M A, Sultana J and Islam M S 2020 Appl. Optics 59 8519
[10] Homola J 2008 Chem. Rev. 108 462
[11] Xue J, Li S, Qin W, Xin X and Zhu X 2013 Opt. Express 21 13733
[12] Hassani A and Skorobogatiy M 2006 Opt. Express 14 11616
[13] Ding Z W, Lang T T, Wang Y and Zhao C L 2017 J. Lightwave. Technol. 35 4734
[14] Yu Y L, Laiw S K, Kishikawa H and Goto N 2020 Appl. Optics 59 5539
[15] Qiu S, Yuan J, Zhou X, Li F, Wang Q, Qu Y, Yan B, Wu Q, Wang K, Sang X, Long K and Yu C 2020 Sensors 20 6539
[16] Wei C, Menyuk C R and Hu J 2020 OSA Advanced Photonics Congress NoM4G. 7
[17] Liu Y, Chen H, Ma M, Zhang W, Wang Y and Li S 2018 J. Phys. D: Appl. Phys. 51 125101
[18] Ghosh G and Endo M 1994 J. Lightwave. Technol. 12 1338
[19] Liu C, Lv J, Liu W, Wang F and Chu P K 2021 Chin. Opt. Lett. 19 102202
[20] Santos D F, Guerreiro A and Baptista J M 2015 IEEE Sens. J. 15 5472
[21] Paul A K, Sarkar AnK, Rahman A B S and Khaleque A 2018 IEEE Sens. J. 18 5761
[22] Jiang L, Zheng Y, Hou L, Zheng K, Peng J and Zhao X 2015 Opt. Commun. 351 50
[23] Hassani A and Skorobogatiy M 2007 J. Opt. Soc. Am. B 24 1423
[24] Wang G, Lu Y, Duan L and Yao J 2020 IEEE J. Sel. Top. Quantum Electron. 27 5600108
[25] Zhen K F, Fang S B, Li S G and Wei Z Y 2019 Chin. Phys. B 28 094209
[26] Paul A K, Habib M S, Hai N H and Razzak S M A 2020 Opt. Commun. 464 125556
[27] Bing P, Sui J, Wu G, Guo X, Li Z, Tan L and Yao J 2020 Plasmonics. 15 1071
[28] Bing P B, Huang S C, Sui J L, Wang H and Wang Z Y 2018 Sensors 18 2051
[29] Knight J C, Birks T A, Russell P S J and Atkin D M 1996 Opt. Lett. 21 1547
[30] Knight J C 2003 Nature 424 847
[31] Falkenstein P, Merritt C D and Justus B L 2004 Opt. Lett. 29 1858
[32] Hong Y F, Gao S F, Ding W, Zhang X, Jia A Q, Sheng Y L, Wang P and Wang Y Y 2022 Laser Photonics. Rev. 16 2100365
[1] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[2] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[3] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[4] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[5] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[6] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[7] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[8] High-sensitivity refractive index sensors based on Fano resonance in a metal-insulator-metal based arc-shaped resonator coupled with a rectangular stub
Shubin Yan(闫树斌), Hao Su(苏浩), Xiaoyu Zhang(张晓宇), Yi Zhang(张怡), Zhanbo Chen(陈展博), Xiushan Wu(吴秀山), and Ertian Hua(华尔天). Chin. Phys. B, 2022, 31(10): 108103.
[9] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[10] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[11] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[12] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[13] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[14] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
[15] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
No Suggested Reading articles found!