Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 128401    DOI: 10.1088/1674-1056/25/12/128401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A high-power subterahertz surface wave oscillator with separated overmoded slow wave structures

Guang-Qiang Wang(王光强)1,2, Jian-Guo Wang(王建国)1,3, Peng Zeng(曾鹏)1,2, Dong-Yang Wang(王东阳)1,2, Shuang Li(李爽)1,2,3
1. Northwest Institute of Nuclear Technology, Xi'an 710024, China;
2. Science and Technology on High Power Microwave Laboratory, Xi'an 710024, China;
3. School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  

A megawatt-level subterahertz surface wave oscillator (SWO) is proposed to obtain high conversion efficiency by using separated overmoded slow wave structures (SWSs). Aiming at the repetitive operation and practical applications, the device driven by electron beam with modest energy and current is theoretically analyzed and verified. Then,the functions of the two SWS sections and the effect of the drift tube are investigated by using a particle-in-cell code to reveal how the proposed device achieves high efficiency. The mode analysis of the beam-wave interaction region in the device is also carried out, and the results indicate that multi-modes participate in the premodulation of the electron beam in the first SWS section, while the TM01 mode surface wave is successfully and dominantly excited and amplified in the second SWS section. Finally, a typical simulation result demonstrates that at a beam energy of 313 keV, beam current of 1.13 kA, and guiding magnetic field of above 3.5 T, a high-power subterahertz wave is obtained with an output power of about 70 MW at frequency 146.3 GHz, corresponding to the conversion efficiency of 20%. Compared with the results of the previous subterahertz overmoded SWOs with integral SWS and similar beam parameters, the efficiency increases almost 50% in the proposed device.

Keywords:  terahertz      surface wave oscillator      mode selection      particle simulation  
Received:  26 May 2016      Revised:  22 August 2016      Accepted manuscript online: 
PACS:  84.40.Fe (Microwave tubes (e.g., klystrons, magnetrons, traveling-wave, backward-wave tubes, etc.))  
  45.10.Db (Variational and optimization methods)  
  52.65.-y (Plasma simulation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61231003).

Corresponding Authors:  Jian-Guo Wang     E-mail:  wanguiuc@mail.xjtu.edu.cn

Cite this article: 

Guang-Qiang Wang(王光强), Jian-Guo Wang(王建国), Peng Zeng(曾鹏), Dong-Yang Wang(王东阳), Shuang Li(李爽) A high-power subterahertz surface wave oscillator with separated overmoded slow wave structures 2016 Chin. Phys. B 25 128401

[1] Benford J, Swegle J and Schamiloglu E 2007 High Power Microwaves, 2nd edn. (New York:CRC)
[2] Booske J H 2008 Phys. Plasmas 15 055502
[3] Feng W, Zhang R and Cao J C 2013 Physics 42 846 (in Chinese)
[4] Nusinovich G S, Pu R F, Antonsen T M, Sinitsyn O V, Rodgers J, Mohamed A, Silverman J, Sheikhly M A, Dimant Y S and Milikh G M 2011 J. Infrared Milli. Terahz. Waves 32 380
[5] Bratman V L, Denisov G G, Ofitserov M M, Korovin S D, Polevin S D and Rostov V V 1987 IEEE Trans. Plasma Sci. 15 2
[6] Klimov A I, Korovin S D, Rostov V V, Ulmaskulov M R, Shpak V G, Shunailov S A and Yalandin M I 2002 IEEE Trans. Plasma Sci. 30 1120
[7] Zhang K C and Wu Z H 2013 Acta Phys. Sin. 62 024103 (in Chinese)
[8] Zhang K C, Qi Z K and Yang Z L 2015 Chin. Phys. B 24 079402
[9] Min S H, Kwon O J, Sattorov M A, So J K, Park S H, Baek I K, Choi D H, Shin Y M and Park G S 2011 36th International Conference on Infrared Millimeter and Terahertz Waves (IRMMW-THz)
[10] Bugaev S P, Cherepenin V A, Kanavets V I, Klimov A I, Kopenkin A D, Koshelev V I, Popov V A and Slepkov A I 1990 IEEE Trans. Plasma Sci. 18 525
[11] Vlasov A N, Shkvarunets A G, Rodgers J C, Carmel Y, Antonsen T M, Abuelfadl T M, Lingze D, Cherepenin V A, Nusinovich G S, Botton M and Granatstein V L 2000 IEEE Trans. Plasma Sci. 28 550
[12] Chen Z, Wang J, Wang Y, Qiao H, Guo W and Zhang D 2014 Chin. Phys. B 23 068402
[13] Wang G Q, Wang J G, Li S, Wang X F, Lu X C and Song Z M 2015 Acta Phys. Sin. 64 050703 (in Chinese)
[14] Ginzburg N S, Zaslavsky V Y, Malkin A M and Sergeev A S 2013 Technical Phys. 58 267
[15] Wang G, Wang J, Tong C, Li X, Wang X, Li S and Lu X 2013 Phys. Plasmas 20 043105
[16] Chen Z, Wang J, Wang G, Li S, Wang Y, Zhang D and Qiao H 2014 Acta Phys. Sin. 63 110703 (in Chinese)
[17] Wang G, Wang J, Li S, Zeng P, Zhang L and Chen Z 2016 High Power Laser and Particle Beams 28 033103 (in Chinese)
[18] Li X, Wang J, Song Z, Chen C, Sun J, Zhang X and Zhang Y 2012 Phys. Plasmas 19 083111
[19] Li X, Wang J, Sun J, Song Z, Ye H, Zhang Y, Zhang L and Zhang L 2013 IEEE Trans. Electron Dev. 60 2931
[20] Grabowski C, Gahl J M and Schamiloglu E 1997 IEEE Trans. Plasma Sci. 25 335
[21] Zhu J, Shu T, Zhang J, Li G and Zhang Z 2010 Phys. Plasmas 17 083104
[22] Wang G, Wang J, Li S and Wang X 2015 AIP Adv. 5 097155
[23] Wang G, Wang J, Zeng P, Li S and Wang D 2016 Phys. Plasmas 23 023104
[24] Minami K, Ogura K, Aiba Y, Amin M R, Zheng X D, Watanabe T, Carmel Y, Destler W W and Granatstein V L 1995 IEEE Trans. Plasma Sci. 23 124
[25] Levush B, Antonsen T M, Bromborsky A, Lou W R and Carmel Y 1992 IEEE Trans. Plasma Sci. 20 263
[26] Wang J, Zhang D, Liu C, Li Y, Wang Y, Wang H, Qiao H and Li X 2009 Phys. Plasmas 16 033108
[27] Wang J, Wang Y and Zhang D 2006 IEEE Trans. Plasma Sci. 34 681
[28] Teng Y, Cao Y, Song Z, Ye H, Shi Y, Chen C and Sun J 2014 Phys. Plasmas 21 123108
[29] Zhang D, Zhang J, Zhong H, Jin Z and Ju J 2014 Phys. Plasmas 21 093102
[30] Wang G, Wang J, Li S, Wang X, Tong C, Lu X and Guo W 2013 Acta Phys. Sin. 62 150701 (in Chinese)
[31] Vlasov A N, Ilyin A S and Carmel Y 1998 IEEE Trans. Plasma Sci. 26 605
[1] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[15] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
No Suggested Reading articles found!