Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 028703    DOI: 10.1088/1674-1056/ac70b8
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors

Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一)
Beijing Key Laboratory of Optoelectronic Functional Materials&Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China
Abstract  Recently, lanthanide-ion-doped luminescent materials have been extensively used as optical thermometry probes due to their fast responses, non-contact, and high sensitivity properties. Based on different responses of two emissions to temperature, the fluorescence intensity ratio (FIR) technique can be used to estimate the sensitivities for assessing the optical thermometry performances. In this study, we introduce different doping concentrations of Eu$^{3+}$ ions into negative thermal expansion material Sc$_{2}$W$_{3}$O$_{12}$ to increase the thermal-enhanced luminescence from 373 K to 548 K, and investigate the temperature sensing properties in detail. All samples can exhibit their good luminescence behaviors thermally enhanced. The emission intensity of Sc$_{2}$W$_{3}$O$_{12}$:6-mol% Eu$^{3+}$ phosphor reaches 147.8% of initial intensity at 473 K. As the Eu$^{3+}$ doping concentration increases, the resistance of the sample to thermal quenching decreases. The FIR technique based on each of the transitions $^{5}$D$\to {}^{7}$F$_{1}$ (592 nm) and $^{5}$D$\to ^{7}$F$_{2 }$ (613 nm) of Eu$^{3+}$ ions demonstrates a maximum relative temperature sensitivity of 3.063% K$^{-1}$ at 298 K for Sc$_{2}$W$_{3}$O$_{12}$:6-mol% Eu$^{3+}$ phosphor. The sensitivity of sample decreases with the increase of Eu$^{3+}$ concentration. Benefiting from the thermal-enhanced luminescence performance and good temperature sensing properties, the Sc$_{2}$W$_{3}$O$_{12}$:Eu$^{3+}$ phosphors can be used as optical thermometers.
Keywords:  photoluminescence      Sc2W3O12:Eu3+      negative lattice expansion      thermal-enhanced luminescence  
Received:  22 March 2022      Revised:  15 May 2022      Accepted manuscript online:  18 May 2022
PACS:  87.15.mq (Luminescence)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51872327).
Corresponding Authors:  Xuan-Yi Yuan     E-mail:  yuanxuanyi@ruc.edu.cn

Cite this article: 

Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一) Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors 2023 Chin. Phys. B 32 028703

[1] Zhao M, Liao H X, Ning L X, Zhang Q Y, Liu Q L and Xia Z G 2018 Adv. Mater. 30 1802489
[2] Huang X, Zhang W T, Wang X M, Zhang J Y, Gao X and Du H Y 2022 J. Colloid. Interf. Sci. 608 3204
[3] Tang W, Zuo C D, Li Y K, Ma C Y, Yuan X Y, Wen Z C and Cao Y G 2021 J. Mater. Chem. C 9 15112
[4] Wang Y Z, Wang Y A, Ma C Y, Li Y B, Zhao C, Ye W G, Wen Z C, Yuan X Y and Cao Y G 2021 J. Materi. Chem. C 9 16626
[5] Kolesnikov I E, Kalinichev A A, Kurochkin M A, Mamonova D V, Kolesnikov E Y, Kurochkin A V, Lähderanta E and Mikhailov M D 2017 J. Lumin. 192 40
[6] Yuan N, Liu D Y, Yu X C, Sun H X, Ming C G, Wong W H, Song F, Yu D Y, Pun E Y B and Zhang D L 2018 Mater. Lett. 218 337
[7] Suo H, Zhao X Q, Zhang Z Y, Wang Y, Sun J S, Jin M K and Guo C F 2020 Laser Photon. Rev. 15 2000319
[8] Zheng H, Chen B J, Yu H Q, Zhang J S, Sun J S, Li X P, Sun M, Tian B N, Fu S B, Zhong H, Dong B, Hua R N and Xia H P 2014 J. Colloid Interf. Sci. 420 27
[9] Wang C L, Jin Y H, Zhang R T, Yao Q and Hu Y H 2022 J. Alloys Compd. 894 162494
[10] Ye W G, Zhao C, Shen X F, Ma C Y, Deng Z H, Li Y B, Wang Y Z, Zuo C D, Wen Z C, Li Y K, Yuan X Y, Wang C and Cao Y G 2021 ACS Appl. Electron. Mater. 3 1403
[11] Wade S A, Collins S F and Baxter G W 2003 J. Appl. Phys. 94 4743
[12] Liang Z, Qin F, Zheng Y D, Zhang Z G and Cao W W 2016 Sensor. Actuat. A-Phys. 238 215
[13] Nikolić M G, Al-Juboori A Z, Dordević V and Dramićanin M D 2013 Phys. Scripta T157 014056
[14] Cheng Y, Wang Y B, Li D H, Bao J, Deng D G, Guo H and Lei L 2022 Chem. Commun. 58 2327
[15] Deng T T, Song E H, Zhou Y Y and Yuan J 2019 J. Alloys Compd. 795 453
[16] Kim Y H, Arunkumar P, Kim B Y, Unithrattil S, Kim E, Moon S H, Hyun J Y, Kim K H, Lee D, Lee J S and Im W B 2017 Nat. Mater. 16 543
[17] Ye W G, Ma C Y, Li Y B, Zhao C, Wang Y Z, Zuo C D, Wen Z C, Li Y K, Yuan X Y and Cao Y G 2021 J. Mater. Chem. C 9 15201
[18] Zou H, Chen B, Hu Y F, Zhang Q W, Wang X S and Wang F 2020 J. Phys. Chem. Lett. 11 3020
[19] Zou H, Yang X Q, Chen B, Du Y Y, Ren B Y, Sun X W, Qiao X S, Zhang Q W and Wang F 2019 Angew. Chem. Int. Ed. 58 17255
[20] Zhou L J, Wang W X, Xu D K, Wang Z Y, Yi Z B, Wang M and Lu Z G 2021 Ceram. Int. 47 34820
[21] Li X W, Xu H L, Xia X M, Xie F Y, Zhong S L and Xu D K 2019 Ceram. Int. 45 10461
[22] Wang W, Fu M Q, Liu S W, Zhang X Y, Wei Y and Li G G 2022 J. Lumin. 242 118536
[23] Evans J, Mary T A and Sleight A W 1998 J. Solid State Chem. 137 148
[24] Shannon R D 1976 Acta Crystallogr. A 32 751
[25] Tian Y, Chen B J, Hua R N, Sun J S, Cheng L H, Zhong H Y, Li X P, Zhang J S, Zheng Y F, Yu T T, Huang L B and Yu H Q 2011 J. Appl. Phys. 109 053511
[26] Lal S C, Naseemabeevi J I and Ganesanpotti S 2021 J. Am. Ceram. Soc. 104 5293
[27] Xie J H, Ding N, Li X B, Huang W T, Yang H J, Wang J, Wang L X and Zhang Q T 2019 J. Mater. Sci-Mater. El. 30 17923
[28] Huang s H and Lou L R 1990 Chin. J. Lumin. 11 1
[29] Tian Y, Chen B J, Tian B N, Hua R N, Sun J S, Cheng L H, Zhong H Y, Li X P, Zhang J S, Zheng Y F, Yu T T, Huang L B and Meng Q Y 2011 J. Alloys Compd. 509 6096
[30] Mu B S, Zhang Y, Bian Q F, Li C R, Li Z C, Chu Y T, Zhao F and Sun J C 2021 Chin. Phys. B 30 123201
[31] Wang C L, Jin Y H, Yuan L F, Wu H Y, Ju G F, Li Z Z, Liu D, Lv Y, Chen L and Hu Y H 2019 Chem. Eng. J. 374 992
[32] Wang X F, Liu Q, Bu Y Y, Liu C S, Liu T and Yan X H 2015 RSC Adv. 5 86219
[33] Rai V K 2007 Appl. Phys. B-Lasers O. 88 297
[34] Vu Q T H, Bondzior B, Stefanska D, Miniajluk-Gawel N, Winiarski M J and Deren P J 2021 Sci. Rep. 11 22847
[1] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[2] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[3] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[4] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[7] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[8] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[9] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[10] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[11] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[12] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[13] Energy transfer, luminescence properties, and thermal stability of color tunable barium pyrophosphate phosphors
Meng-Jiao Xu(徐梦姣), Su-Xia Li(李素霞), Chen-Chen Ji(季辰辰), Wan-Xia Luo(雒晚霞), Lu-Xiang Wang(王鲁香). Chin. Phys. B, 2020, 29(6): 063301.
[14] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
[15] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
No Suggested Reading articles found!