INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors |
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一)† |
Beijing Key Laboratory of Optoelectronic Functional Materials&Micro-nano Devices, Department of Physics, Renmin University of China, Beijing 100872, China |
|
|
Abstract Recently, lanthanide-ion-doped luminescent materials have been extensively used as optical thermometry probes due to their fast responses, non-contact, and high sensitivity properties. Based on different responses of two emissions to temperature, the fluorescence intensity ratio (FIR) technique can be used to estimate the sensitivities for assessing the optical thermometry performances. In this study, we introduce different doping concentrations of Eu$^{3+}$ ions into negative thermal expansion material Sc$_{2}$W$_{3}$O$_{12}$ to increase the thermal-enhanced luminescence from 373 K to 548 K, and investigate the temperature sensing properties in detail. All samples can exhibit their good luminescence behaviors thermally enhanced. The emission intensity of Sc$_{2}$W$_{3}$O$_{12}$:6-mol% Eu$^{3+}$ phosphor reaches 147.8% of initial intensity at 473 K. As the Eu$^{3+}$ doping concentration increases, the resistance of the sample to thermal quenching decreases. The FIR technique based on each of the transitions $^{5}$D$\to {}^{7}$F$_{1}$ (592 nm) and $^{5}$D$\to ^{7}$F$_{2 }$ (613 nm) of Eu$^{3+}$ ions demonstrates a maximum relative temperature sensitivity of 3.063% K$^{-1}$ at 298 K for Sc$_{2}$W$_{3}$O$_{12}$:6-mol% Eu$^{3+}$ phosphor. The sensitivity of sample decreases with the increase of Eu$^{3+}$ concentration. Benefiting from the thermal-enhanced luminescence performance and good temperature sensing properties, the Sc$_{2}$W$_{3}$O$_{12}$:Eu$^{3+}$ phosphors can be used as optical thermometers.
|
Received: 22 March 2022
Revised: 15 May 2022
Accepted manuscript online: 18 May 2022
|
PACS:
|
87.15.mq
|
(Luminescence)
|
|
32.50.+d
|
(Fluorescence, phosphorescence (including quenching))
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51872327). |
Corresponding Authors:
Xuan-Yi Yuan
E-mail: yuanxuanyi@ruc.edu.cn
|
Cite this article:
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一) Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors 2023 Chin. Phys. B 32 028703
|
[1] Zhao M, Liao H X, Ning L X, Zhang Q Y, Liu Q L and Xia Z G 2018 Adv. Mater. 30 1802489 [2] Huang X, Zhang W T, Wang X M, Zhang J Y, Gao X and Du H Y 2022 J. Colloid. Interf. Sci. 608 3204 [3] Tang W, Zuo C D, Li Y K, Ma C Y, Yuan X Y, Wen Z C and Cao Y G 2021 J. Mater. Chem. C 9 15112 [4] Wang Y Z, Wang Y A, Ma C Y, Li Y B, Zhao C, Ye W G, Wen Z C, Yuan X Y and Cao Y G 2021 J. Materi. Chem. C 9 16626 [5] Kolesnikov I E, Kalinichev A A, Kurochkin M A, Mamonova D V, Kolesnikov E Y, Kurochkin A V, Lähderanta E and Mikhailov M D 2017 J. Lumin. 192 40 [6] Yuan N, Liu D Y, Yu X C, Sun H X, Ming C G, Wong W H, Song F, Yu D Y, Pun E Y B and Zhang D L 2018 Mater. Lett. 218 337 [7] Suo H, Zhao X Q, Zhang Z Y, Wang Y, Sun J S, Jin M K and Guo C F 2020 Laser Photon. Rev. 15 2000319 [8] Zheng H, Chen B J, Yu H Q, Zhang J S, Sun J S, Li X P, Sun M, Tian B N, Fu S B, Zhong H, Dong B, Hua R N and Xia H P 2014 J. Colloid Interf. Sci. 420 27 [9] Wang C L, Jin Y H, Zhang R T, Yao Q and Hu Y H 2022 J. Alloys Compd. 894 162494 [10] Ye W G, Zhao C, Shen X F, Ma C Y, Deng Z H, Li Y B, Wang Y Z, Zuo C D, Wen Z C, Li Y K, Yuan X Y, Wang C and Cao Y G 2021 ACS Appl. Electron. Mater. 3 1403 [11] Wade S A, Collins S F and Baxter G W 2003 J. Appl. Phys. 94 4743 [12] Liang Z, Qin F, Zheng Y D, Zhang Z G and Cao W W 2016 Sensor. Actuat. A-Phys. 238 215 [13] Nikolić M G, Al-Juboori A Z, Dordević V and Dramićanin M D 2013 Phys. Scripta T157 014056 [14] Cheng Y, Wang Y B, Li D H, Bao J, Deng D G, Guo H and Lei L 2022 Chem. Commun. 58 2327 [15] Deng T T, Song E H, Zhou Y Y and Yuan J 2019 J. Alloys Compd. 795 453 [16] Kim Y H, Arunkumar P, Kim B Y, Unithrattil S, Kim E, Moon S H, Hyun J Y, Kim K H, Lee D, Lee J S and Im W B 2017 Nat. Mater. 16 543 [17] Ye W G, Ma C Y, Li Y B, Zhao C, Wang Y Z, Zuo C D, Wen Z C, Li Y K, Yuan X Y and Cao Y G 2021 J. Mater. Chem. C 9 15201 [18] Zou H, Chen B, Hu Y F, Zhang Q W, Wang X S and Wang F 2020 J. Phys. Chem. Lett. 11 3020 [19] Zou H, Yang X Q, Chen B, Du Y Y, Ren B Y, Sun X W, Qiao X S, Zhang Q W and Wang F 2019 Angew. Chem. Int. Ed. 58 17255 [20] Zhou L J, Wang W X, Xu D K, Wang Z Y, Yi Z B, Wang M and Lu Z G 2021 Ceram. Int. 47 34820 [21] Li X W, Xu H L, Xia X M, Xie F Y, Zhong S L and Xu D K 2019 Ceram. Int. 45 10461 [22] Wang W, Fu M Q, Liu S W, Zhang X Y, Wei Y and Li G G 2022 J. Lumin. 242 118536 [23] Evans J, Mary T A and Sleight A W 1998 J. Solid State Chem. 137 148 [24] Shannon R D 1976 Acta Crystallogr. A 32 751 [25] Tian Y, Chen B J, Hua R N, Sun J S, Cheng L H, Zhong H Y, Li X P, Zhang J S, Zheng Y F, Yu T T, Huang L B and Yu H Q 2011 J. Appl. Phys. 109 053511 [26] Lal S C, Naseemabeevi J I and Ganesanpotti S 2021 J. Am. Ceram. Soc. 104 5293 [27] Xie J H, Ding N, Li X B, Huang W T, Yang H J, Wang J, Wang L X and Zhang Q T 2019 J. Mater. Sci-Mater. El. 30 17923 [28] Huang s H and Lou L R 1990 Chin. J. Lumin. 11 1 [29] Tian Y, Chen B J, Tian B N, Hua R N, Sun J S, Cheng L H, Zhong H Y, Li X P, Zhang J S, Zheng Y F, Yu T T, Huang L B and Meng Q Y 2011 J. Alloys Compd. 509 6096 [30] Mu B S, Zhang Y, Bian Q F, Li C R, Li Z C, Chu Y T, Zhao F and Sun J C 2021 Chin. Phys. B 30 123201 [31] Wang C L, Jin Y H, Yuan L F, Wu H Y, Ju G F, Li Z Z, Liu D, Lv Y, Chen L and Hu Y H 2019 Chem. Eng. J. 374 992 [32] Wang X F, Liu Q, Bu Y Y, Liu C S, Liu T and Yan X H 2015 RSC Adv. 5 86219 [33] Rai V K 2007 Appl. Phys. B-Lasers O. 88 297 [34] Vu Q T H, Bondzior B, Stefanska D, Miniajluk-Gawel N, Winiarski M J and Deren P J 2021 Sci. Rep. 11 22847 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|