Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 028702    DOI: 10.1088/1674-1056/ac7452
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Heterogeneous hydration patterns of G-quadruplex DNA

Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕)
College of Physics Science and Technology, Yangzhou University, Yangzhou 225009, China
Abstract  G-quadruplexes (GQs) are guanine-rich, non-canonical nucleic acid structures that play fundamental roles in biological processes. Their structure and function are strongly influenced by their hydration shells. Although extensively studied through various experimental and computational methods, hydration patterns near DNA remain under debate due to the chemically and topologically heterogeneous nature of the exposed surface. In this work, we employed all-atom molecular dynamics (MD) simulation to study the hydration patterns of GQ DNA. The Drude oscillator model was used in MD simulation as a computationally efficient method for modeling electronic polarization in DNA ion solutions. Hydration structure was analyzed in terms of radial distribution functions and high-density three-dimensional hydration sites. Analysis of hydration dynamics focused on self-diffusion rates and orientation time correlation at different structural regions of GQ DNA. The results show highly heterogeneous hydration patterns in both structure and dynamics; for example, there are several insular high-density sites in the inner channel, and ‘spine of water’ in the groove. For water inside the loop, anomalous diffusion is present over a long time scale, but for water around the phosphate group and groove, diffusion becomes normal after ~ 30 ps. These essentially correspond to deeply buried structural water and strong interaction with DNA, respectively.
Keywords:  G-quadruplex DNA      hydration      diffusion      reorientation dynamics  
Received:  21 March 2022      Revised:  11 May 2022      Accepted manuscript online:  29 May 2022
PACS:  87.14.gk (DNA)  
  87.15.-v (Biomolecules: structure and physical properties)  
  87.15.ag (Quantum calculations)  
  87.15.ap (Molecular dynamics simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705160 and 11647074).
Corresponding Authors:  Yuan-Yan Wu     E-mail:  yywu@yzu.edu.cn

Cite this article: 

Cong-Min Ji(祭聪敏), Yusong Tu(涂育松), and Yuan-Yan Wu(吴园燕) Heterogeneous hydration patterns of G-quadruplex DNA 2023 Chin. Phys. B 32 028702

[1] Spiegel J, Adhikari S and Balasubramanian S 2020 Trends Chem. 2 123
[2] Rhodes D and Lipps H J 2015 Nucleic Acids Res. 43 8627
[3] Lerner L K and Sale J E 2019 Genes 10 95
[4] Yan X 2011 Chem. Soc. Rev. 40 2719
[5] Jonchhe S, Pandey S, Emura T, Hidaka K, Hossain M A, Shrestha P, Sugiyama H, Endo M and Mao H 2018 Proc. Natl. Acad. Sci. USA 115 9539
[6] Zhang D, Huang T, Lukeman P S and Paukstelis P J 2014 Nucleic Acids Res. 42 13422
[7] Pal S and Paul S 2019 J. Phys. Chem. C 123 11686
[8] Miyoshi D, Fujimoto T and Sugimoto N 2012 Quadruplex Nucleic Acids p. 87
[9] Di W, Wang X, Zhou Y, Mei Y, Wang W and Cao Y 2022 Chin. Phys. Lett. 39 038701
[10] Liu Z, Zhao H L, Lang H Z, Wang Y, Li Z L, Men Z W, Wang S H and Sun C L 2021 Chin. Phys. B 30 43301
[11] Nagatoishi S and Sugimoto N 2012 Mol. Biosyst. 8 2766
[12] Miller M C, Buscaglia R, Chaires J B, Lane A N and Trent J O 2010 J. Am. Chem. Soc. 132 17105
[13] Li K, Yatsunyk L and Neidle S 2021 Nucleic Acids Res. 49 519
[14] Clark G R, Squire C J, Baker L J, Martin R F and White J 2000 Nucleic Acids Res. 28 1259
[15] Pal S K and Zewail A H 2004 Chem. Rev. 104 2099
[16] Zhong D, Pal S K and Zewail A H 2011 Chem. Phys. Lett. 503 1
[17] Furse K E and Corcelli S A 2008 J. Am. Chem. Soc. 130 13103
[18] Halle B and Nilsson L 2009 J. Phys. Chem. B 113 8210
[19] Yang M, Szyc Ł and Elsaesser T 2011 J. Phys. Chem. B 115 13093
[20] Laage D, Elsaesser T and Hynes J T 2017 Chem. Rev. 117 10694
[21] Ruggiero E and Richter S N 2018 Nucleic Acids Res. 46 3270
[22] Zhang N, Li M R, Xu H T and Zhang F S 2020 Chin. Phys. Lett. 37 088701
[23] Luu K N, Phan A T, Kuryavyi V, Lacroix L and Patel D J 2006 J. Am. Chem. Soc. 128 9963
[24] Chung W J, Heddi B, Hamon F, Teulade-Fichou M P and Phan A T 2014 Angew. Chem. Int. Edit. 53 999
[25] Črnugelj M, Šket P and Plavec J 2003 J. Am. Chem. Soc. 125 7866
[26] Foloppe N and MacKerell J A D 2000 J. Comput. Chem. 21 86
[27] Hart K, Foloppe N, Baker C M, Denning E J, Nilsson L and MacKerell Jr A D 2012 J. Chem. Theory Comput. 8 348
[28] Cheatham Iii T E, Cieplak P and Kollman P A 1999 J. Biomol. Struct. Dyn. 16 845
[29] Savelyev A and MacKerell Jr A D 2014 J. Comput. Chem. 35 1219
[30] Lamoureux G, Harder E, Vorobyov I V, Roux B and MacKerell A D 2006 Chem. Phys. Lett. 418 245
[31] Šket P, Črnugelj M and Plavec J 2004 Bioorgan. Med. Chem. 12 5735
[32] Brooks B R, Brooks III C L, Mackerell Jr A D, Nilsson L, Petrella R J, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner A R, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor R W, Post C B, Pu J Z, Schaefer M, Tidor B, Venable R M, Woodcock H L, Wu X, Yang W, York D M and Karplus M 2009 J. Comput. Chem. 30 1545
[33] Durell S R, Brooks B R and Ben-Naim A 1994 J. Phys. Chem. 98 2198
[34] Nelson M T, Humphrey W, Gursoy A, Dalke A, Kalé L V, Skeel R D and Schulten K 1996 The International Journal of Supercomputer Applications and High Performance Computing 10 251
[35] Petersen H G 1995 J. Chem. Phys. 103 3668
[36] Abbasbandy S 2003 Appl. Math. Comput. 145 887
[37] Jiang W, Hardy D J, Phillips J C, MacKerell A D, Schulten K and Roux B 2011 J. Phys. Chem. Lett. 2 87
[38] Brooks C L 1989 J. Solution Chem. 18 99
[1] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[2] Anomalous diffusion in branched elliptical structure
Kheder Suleiman, Xuelan Zhang(张雪岚), Erhui Wang(王二辉),Shengna Liu(刘圣娜), and Liancun Zheng(郑连存). Chin. Phys. B, 2023, 32(1): 010202.
[3] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[4] Improving sound diffusion in a reverberation tank using a randomly fluctuating surface
Qi Li(李琪), Dingding Xie(谢丁丁), Rui Tang(唐锐), Dajing Shang(尚大晶), and Zhichao Lv(吕志超). Chin. Phys. B, 2022, 31(6): 064302.
[5] Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(4): 044704.
[6] Self-adaptive behavior of nunchakus-like tracer induced by active Brownian particles
Yi-Qi Xia(夏益祺), Guo-Qiang Feng(冯国强), and Zhuang-Lin Shen(谌庄琳). Chin. Phys. B, 2022, 31(4): 040204.
[7] Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(3): 036401.
[8] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[9] AA-stacked borophene-graphene bilayer as an anode material for alkali-metal ion batteries with a superhigh capacity
Yi-Bo Liang(梁艺博), Zhao Liu(刘钊), Jing Wang(王静), and Ying Liu(刘英). Chin. Phys. B, 2022, 31(11): 116302.
[10] Diffusion dynamics in branched spherical structure
Kheder Suleiman, Xue-Lan Zhang(张雪岚), Sheng-Na Liu(刘圣娜), and Lian-Cun Zheng(郑连存). Chin. Phys. B, 2022, 31(11): 110202.
[11] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[12] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[13] A new simplified ordered upwind method for calculating quasi-potential
Qing Yu(虞晴) and Xianbin Liu(刘先斌). Chin. Phys. B, 2022, 31(1): 010502.
[14] Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇). Chin. Phys. B, 2021, 30(9): 098201.
[15] A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2
Hui Wan(万惠), Zhixiao Liu(刘智骁), Guangdong Liu(刘广东), Shuaiyu Yi(易帅玉), Fei Gao(高飞), Huiqiu Deng(邓辉球), Dingwang Yuan(袁定旺), and Wangyu Hu(胡望宇). Chin. Phys. B, 2021, 30(7): 073101.
No Suggested Reading articles found!