INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell |
Caixia Zhang(张彩霞)1,2,†, Yaling Li(李雅玲)1, Beibei Lin(林蓓蓓)1, Jianlong Tang(唐建龙)1, Quanzhen Sun(孙全震)1, Weihao Xie(谢暐昊)1, Hui Deng(邓辉)1, Qiao Zheng(郑巧)1, and Shuying Cheng(程树英)1,2,‡ |
1 College of Physics and Information Engineering, and Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou 350108, China; 2 Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou 213164, China |
|
|
Abstract The traditional CdS buffer layers in flexible CZTSSe solar cells lead to light absorption losses and environmental pollution problems. Therefore, the study of Cd-free buffer layer is very important for the realization of environmentally friendly and efficient CZTSSe solar cells. The Zn$_{1-x}$Mg$_{x}$O (ZnMgO) and Zn$_{1-x}$Sn$_{x}$O (ZnSnO) alternate buffer layers are studied in this study using the simulation package solar cell capacitance simulator (SCAPS-1D) numerical simulation model, and the theoretical analysis is further verified by the results of the experiments. We simulate the performance of CZTSSe/Zn$X$O ($X={\rm Mg/Sn}$) heterojunction devices with different Mg/(Zn$+$Mg) and Sn/(Zn$+$Sn) ratios and analyze the intrinsic mechanism of the effect of conduction band offsets (CBO) on the device performance. The simulation results show that the CZTSSe/Zn$X$O ($X={\rm Mg/Sn}$) devices achieve optimal performance with a small "spike" band or "flat" band at Mg and Sn doping concentrations of 0.1 and 0.2, respectively. To investigate the potential of Zn$_{0.9}$Mg$_{0.1}$O and Zn$_{0.8}$Sn$_{0.2}$O as alternative buffer layers, carrier concentrations and thicknesses are analyzed. The simulation demonstrates that the Zn$_{0.9}$Mg$_{0.1}$O device with low carrier concentration has a high resistivity, serious carrier recombination, and a greater impact on performance from thickness variation. Numerical simulations and experimental results show the potential of the ZnSnO buffer layer as an alternative to toxic CdS, and the ZnMgO layer has the limitation as a substitute buffer layer. This paper provides the theoretical basis and experimental proof for further searching for a suitable flexible CZTSSe Cd-free buffer layer.
|
Received: 02 September 2022
Revised: 12 October 2022
Accepted manuscript online: 19 October 2022
|
PACS:
|
88.40.jn
|
(Thin film Cu-based I-III-VI2 solar cells)
|
|
88.40.fc
|
(Modeling and analysis)
|
|
88.40.ff
|
(Performance testing)
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62074037 and 52002073) and the Fund from the Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China (Grant No. 2021ZZ124). The authors also thank Testing Center of Fuzhou University for facility access. |
Corresponding Authors:
Caixia Zhang, Shuying Cheng
E-mail: zhangcx@fzu.edu.cn;sycheng@fzu.edu.cn
|
Cite this article:
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英) Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell 2023 Chin. Phys. B 32 028801
|
[1] Gang M G, Shin S W, Hong C W, Gurav K V, Gwak J, Yun J H, Lee J Y and Kim J H 2016 Green Chem. 18 700 [2] Gong Y, Zhang Y, Zhu Q, Zhou Y, Qiu R, Niu C, Yan W, Huang W and Xin H 2021 Energy Environ. Sci. 14 2369 [3] Zhou Y L, Zhou W H, Li M, Du Y F and Wu S X 2011 J. Phys. Chem.C 115 19632 [4] Hauschild D, Mezher M, Schnabel T, Spiering S, Kogler W, Carter J, Blum M, Yang W, Ahlswede E, Heske C and Weinhardt L 2019 ACS Appl. Energy Mater. 2 4098 [5] Htay M T, Hashimoto Y, Momose N, Sasaki K, Ishiguchi H, Igarashi S, Sakurai K and Ito K 2011 Jpn. J. Appl. Phys. 50 032301 [6] Jeong H, Nandi R, Cho J Y, Pawar P S, Lee H S, Neerugatti K E, Kim J H and Heo J 2021 Prog. Photovoltaics Res. Appl. 29 1057 [7] Hironiwa D, Matsuo N, Sakai N, Katou T, Sugimoto H, Chantana J, Tang Z and Minemoto T 2014 Jpn. J. Appl. Phys. 53 106502 [8] Lee J, Enkhbat T, Han G, Sharif M H, Enkhbayar E, Yoo H, Kim J H, Kim S and Kim J 2020 Nano Energy 78 105206 [9] Ke Y, Lany S, Berry J J, Perkins J D, Parilla P A, Zakutayev A, Ohno T, O'Hayre R and Ginley D S 2014 Adv. Funct. Mater. 24 2875 [10] Cui X, Sun K, Huang J, Lee C Y, Yan C, Sun H, Zhang Y, Liu F, Hossain M A, Zakaria Y, Wong L H, Green M, Hoex B and Hao X 2018 Chem. Mater. 30 7860 [11] Si X, Liu Y, Lei W, Xu J, Du W, Lin J, Zhou T and Zheng L 2016 Mater. Des. 93 128 [12] Kapilashrami M, Kronawitter C X, Torndahl T, Lindahl J, Hultqvist A, Wang W C, Chang C L, Mao S S and Guo J 2012 Phys. Chem. Chem. Phys. 14 10154 [13] Hironiwa D, Matsuo N, Chantana J, Sakai N, Kato T, Sugimoto H and Minemoto T 2015 Phys. Status. Solidi. A 212 2766 [14] An H R, Ahn H J and Park J W 2015 Ceram. Int. 41 2253 [15] Burgelman M, Nollet P and Degrave S 2000 Thin Solid Films 361 527 [16] Chaurasiya R, Gupta G K and Dixit A 2021 J. Phys. Chem. C 125 4355 [17] Nishat S S, Hossain M J, Mullick F E, Kabir A, Chowdhury S, Islam S and Hossain M 2021 J. Phys. Chem. C 125 13158 [18] Mora-Herrera D, Pal M and Santos-Cruz J 2021 Sol. Energy 220 316 [19] Djinkwi Wanda M, Ouédraogo S, Tchoffo F, Zougmoré F and Ndjaka J M B 2016 Int. J. Photoenergy 28 1 [20] Simya O K, Mahaboobbatcha A and Balachander K 2015 Superlattices Microstruct. 82 248 [21] Najm A S, Chelvanathan P, Tiong S K, Ferdaous M T, Shahahmadi S A, Yusoff Y, Sopian K and Amin N 2021 Coatings 11 52 [22] Zhang C, Yang Z, Deng H, Yan Q, Xie W, Sun Q, Sheng X and Cheng S 2021 J. Phys. Chem. C 125 16746 [23] Nisika, Kaur K and Kumar M 2020 J. Mater. Chem. A 8 21547 [24] Lee S, Kim S, Shin S, Jin Z and Min Y S 2018 J. Ind. Eng. Chem. 58 328 [25] Saadat M, Amiri O and Rahdar A 2019 Sol. Energy 189 464 [26] Crovetto A and Hansen O 2017 Sol. Energy Mater. Sol. Cells 169 177 [27] Dinakaran S, Meher S R and Swarnavalli G C J 2019 Appl. Phys. A 125 1 [28] Narayanan N and Deepak N K 2016 Optik 127 9821 [29] Zhang Y, Jiang D, Sui Y, Wu Y, Wang Z, Yang L, Wang F, Lv S and Yao B 2018 Ceram. Int. 44 15249 [30] Wang L, Luo M, Qin S, Liu X, Chen J, Yang B, Leng M, Xue D J, Zhou Y, Gao L, Song H and Tang J 2015 Appl. Phys. Lett. 107 143902 [31] Leever B J, Bailey C A, Marks T J, Hersam M C and Durstock M F 2012 Adv. Energy Mater. 2 120 [32] Hack J, Luderer C, Reichel C, Opila R and Bivour M 2021 Sol. Energy Mater. Sol. Cells 219 110794 [33] Garain R, Basak A and Singh U P 2021 Mater. Today:. Proc. 39 1833 [34] Yun J H, Kumar M D, Patel M, Park Y C, Byung Soo K and Kim J 2016 Mater. Sci. Semicond. Process. 48 95 [35] Gamal N, Sedky S H, Shaker A and Fedawy M 2021 Optik 242 167306 [36] Ghebouli M A, Ghebouli B, Larbi R, Chihi T and Fatmi M 2021 Optik 241 166203 [37] Asaduzzaman M, Bahar A N, Masum M M and Hasan M M 2017 Alexandria Eng. J. 56 225 [38] Kanevce A, Repins I and Wei S H 2015 Sol. Energy Mater. Sol. Cells 133 119 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|