Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 067503    DOI: 10.1088/1674-1056/abddad
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition

Jin-Hao Zhu(朱金豪)1,2, Lei Jin(金磊)1, Zhe-Huan Jin(金哲欢)1, Guang-Fei Ding(丁广飞)1,†, Bo Zheng(郑波)1, Shuai Guo(郭帅)1,2,‡, Ren-Jie Chen(陈仁杰)1,2, and A-Ru Yan(闫阿儒)1,2
1 CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences(CAS), Ningbo 315201, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We investigate the effects of post-sinter annealing on the microstructure and magnetic properties in B-lean Nd-Fe-B sintered magnets with different quantities of Nd-Ga intergranular additions. The magnet with fewer Nd-Ga additions can enhance 0.2 T in coercivity, with its remanences nearly unchanged after annealing. With the further increase of the Nd-Ga addition, the annealing process leads coercivity to increase 0.4 T, accompanied by a slight decrease of remanence. With the Nd-Ga addition further increasing and after annealing, however, the increase of coercivity is basically constant and the change of remanence is reduced. Microstructure observation indicates that the matrix grains are covered by continuous thin grain boundary phase in the magnets with an appropriate Nd-Ga concentration after the annealing process. However, the exceeding Nd-Ga addition brings out notable segregation of grain boundary phase, and prior formation of part RE6Fe13Ga phase in the sintered magnet. This prior formation results in a weaker change of remanence after the annealing process. Therefore, the diverse changes of magnetic properties with different Nd-Ga concentrations are based on the respective evolution of grain boundary after the annealing process.
Keywords:  Nd-Fe-B magnet      magnetic properties      grain boundary      microstructures  
Received:  07 December 2020      Revised:  15 January 2021      Accepted manuscript online:  20 January 2021
PACS:  75.60.Nt (Magnetic annealing and temperature-hysteresis effects)  
  75.50.Ww (Permanent magnets)  
  75.50.Vv (High coercivity materials)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the Major Project of Science and Technology Innovation 2025 in Ningbo, China (Grant No. 2018B10086), the Major Project of Inner Mongolia Science and Technology, Zhejiang Provincial Public Welfare Technology Application Research Project, China (Grant No. LGG21E010007), and the Key Research and Development Program of Shandong Province, China (Grant No. 2019JZZY010321).
Corresponding Authors:  Guang-Fei Ding, Shuai Guo     E-mail:  dingguangfei@nimte.ac.cn;gshuai@nimte.ac.cn

Cite this article: 

Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒) Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition 2021 Chin. Phys. B 30 067503

[1] Sagawa M, Fujimura S, Togawa N, Yamamoto H and Matsuura Y 1984 J. Appl. Phys. 55 2083
[2] Sugimoto S 2011 J. Phys. D: Appl. Phys. 44 064001
[3] Nakamura H 2018 Scr. Mater. 154 273
[4] Kronmuller H, Durst K and Sagawa M 1988 J. Magn. Magn. Mater. 74 291
[5] Kronmuller H 1987 Phys. Status Solidi B 144 385
[6] Scott D, Ma B M, Liang Y L and Bounds C 1996 J. Appl. Phys. 79 5501
[7] Bance S, Seebacher B, Schrefl T, Exl L, Winklhofer M, Hrkac G, Zimanyi G, Shoji T, Yano M, Sakuma N, Ito M, Kato A and Manabe A 2014 J. Appl. Phys. 116 233903
[8] Sepehri-Amin H, Ohkubo Y, Gruber M, Schrefl T and Hono K 2014 Scr. Mater. 89 29
[9] Ding G F, Guo S, Chen L, Di J H, Chen K, Chen R J, Lee D and Yan A R 2018 J. Alloys Compd. 735 1176
[10] Vial F, Joly F, Nevalainen E, Sagawa M, Hiraga K and Park K 2002 J. Magn. Magn. Mater. 242 1329
[11] Park D, Kim T, Lee S, Kim D and Jang T 2010 J. Appl. Phys. 107 09a737
[12] Chen F G, Jin Y X, Cheng Y and Zhang L T 2018 Scr. Mater. 157 135
[13] Knoch K, Grieb B, Henig E, Kronmuller H and Petzow G 1990 IEEE Trans. Magn. 26 1951
[14] Goto R, Nishio S, Matsuura M, Tezuka N and Sugimoto S 2008 IEEE Trans. Magn. 44 4232
[15] Li W, Ohkubo T and Hono K 2009 Acta Mater. 57 1337
[16] Yang Y Q, Si H G, Yang H, Zhang L, Huang D F, Chen B Y, Chen B Y, Xu F, Hu Y M and Han B J 2018 Phys. Lett. A 382 135
[17] Zeng H X, Liu Z W, Li W, Zhang J S, Zhao L Z, Zhong X C, Yu H Y and Guo B C 2019 J. Magn. Magn. Mater. 471 97
[18] Shu Z T, Zheng B, Ding G F, Liao S C, Di J H, Guo S, Chen R J, Yan A R and Shi L 2020 Chin. Phys. B 29 057501
[19] Jin L, Jin Z H, Zhu J H, Ding G F, Zheng B, Guo S, Chen R J, Yan A R and Liu X C 2021 Chin. Phys. B 30 027503
[20] Lu K C, Bao X Q, Chen G X, Zhang X J, Tang M H, Mu X, Li J H and Gao X X 2019 Scr. Mater. 160 86
[21] Sasaki T, Ohkubo T, Takada Y, Sato T, Kato A, Kaneko Y and Hono K 2016 Scr. Mater. 113 218
[22] Enokido Y, Miwa M, Goto S and Fujikawa Y 2016 Mater. Trans. 57 1960
[23] Grieb B, Pithan C, Henig E and Petzow G 1991 J. Appl. Phys. 70 6354
[24] Xu X D, Dong Z J, Sasaki T, Tang X, Sepehri-Amin H, Ohkubo T and Hono K 2019 J. Alloys Compd. 806 1267
[25] Sasaki T, Takada Y, Okazaki H, Ohkubo T, Nakamura T, Sato T, Kato A, Kaneko Y and Hono K 2019 J. Alloys Compd. 790 750
[26] Ding G F, Guo S, Chen L, Di J H, Song J, Chen R J, Lee D and Yan A R 2018 J. Alloys Compd. 735 795
[1] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[2] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[3] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[4] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[5] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[6] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[7] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[8] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[9] Barrier or easy-flow channel: The role of grain boundary acting on vortex motion in type-II superconductors
Yu Liu(刘宇), Xiao-Fan Gou(苟晓凡), and Feng Xue(薛峰). Chin. Phys. B, 2021, 30(9): 097402.
[10] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[11] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[12] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[13] Structure and magnetic properties of RAlSi (R=light rare earth)
Tai Wang(王泰), Yongquan Guo(郭永权), and Cong Wang(王聪). Chin. Phys. B, 2021, 30(7): 075102.
[14] Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles
Archana V, Lakshmi Mohan, Kathirvel P, and Saravanakumar S. Chin. Phys. B, 2021, 30(4): 048202.
[15] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
No Suggested Reading articles found!