Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 056107    DOI: 10.1088/1674-1056/abd6f9
Special Issue: SPECIAL TOPIC — Ion beam modification of materials and applications
SPECIAL TOPIC—Ion beam modification of materials and applications Prev   Next  

Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃

Zhen Yang(杨振)1,†, Junyuan Yang(杨浚源)2, Qing Liao(廖庆)2, Shuai Xu(徐帅)2, and Bingsheng Li(李炳生)2,‡
1 Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China;
2 State Key Laboratory for Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
Abstract  SIMP steel is newly developed fully martensitic steel for lead-cooled fast reactors and accelerator-driven systems. It is important to evaluate its radiation resistance via high flux neutron irradiation, where dense He atoms can be formed via (n, α) transmutation reaction. Co-irradiation with Fe and He ions, instead of neutron, was performed. Specimens were irradiated with 6.4-MeV Fe ions to the damage dose of 5 dpa at a depth of 600 nm. Three different helium injection ratios of 60-appm He/dpa (dpa: displacements per atom), 200-appm He/dpa and 600-appm He/dpa at a depth of 600 nm, were performed. Two different irradiation temperatures of 300 ℃ and 450 ℃ were carried out. The effect of helium concentration on the microstructure of Fe-irradiated SIMP steel was investigated. Microstructural damage was observed using transmission electron microscopy. The formed dislocation loops and bubbles depended on the helium injection ratio and irradiation temperature. Lots of dislocation loops and helium bubbles were homogeneously distributed at 300 °C, but not at 450 °C. The causes of observed effects are discussed.
Keywords:  martensitic steels      Fe and He co-irradiation      microstructure      transmission electron microscopy  
Received:  08 November 2020      Revised:  16 December 2020      Accepted manuscript online:  28 December 2020
PACS:  61.80.-x (Physical radiation effects, radiation damage)  
  61.80.Jh (Ion radiation effects)  
  68.37.Lp (Transmission electron microscopy (TEM))  
  78.40.Kc (Metals, semimetals, and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1832133 and 12075194), Sichuan Provial Science and Technology Program, China (Grant No. 2020ZYD055), and the Doctor Research Foundation of Southwest University of Science and Technology (Grant No. 18zx714101).
Corresponding Authors:  Zhen Yang, Bingsheng Li     E-mail:;

Cite this article: 

Zhen Yang(杨振), Junyuan Yang(杨浚源), Qing Liao(廖庆), Shuai Xu(徐帅), and Bingsheng Li(李炳生) Effect of helium concentration on irradiation damage of Fe-ion irradiated SIMP steel at 300 ℃ and 450 ℃ 2021 Chin. Phys. B 30 056107

[1] Zhan W L and Xu H S 2012 China Academic Journal Electronic Publishing House 27 375
[2] Sar F, Mhiaoui S and Gasser J G 2007 J. Non-Cryst. Solids 353 3622
[3] Gong X, Marmy P, Verlinden B, Wevers M and Seefeldt M 2015 Corrosion Sci. 94 377
[4] Gong X, Marmy P and Yin Y 2018 J. Nucl. Mater. 509 401
[5] Liu J, Yan W, Sha W, Wang W, Shan Y Y and Yang K 2016 J. Nucl. Mater. 473 189
[6] Zhang L L, Yan W, Shi Q Q, Li Y F, Shan Y Y and Yang K 2020 Corrosion Science 167 108519
[7] Peng J, Shen T L, Cui M H, Zhu Y B, Li B S, Zhang T M, Li J Y, Jin S X, Lu E Y, Cao X Z and Wang Z G 2019 J. Nucl. Mater. 520 131
[8] Ando M, Wakai E, Sawai T, Tanigawa H, Furuya K, Jitsukawa S, Takeuchi H, Oka K, Ohnuki S and Kohyama A 2004 J. Nucl. Mater. 329-333 1137
[9] Li B S and Dai Y 2014 J. Nucl. Mater. 450 42
[10] Peng L, Huang Q Y, Ohnuki S and Yu C Z 2011 Fusion Eng. Deg. 86 2624
[11] Henry J, Vincent L, Averty X, Marini B and Jung P 2007 J. Nucl. Mater. 367-370 411
[12] Li B S, Wang Z G, Shen T L, Wei K F, Shen Y B, Shibayama T, Lu X R and Xiong A L 2019 Chin. Phys. Lett. 36 046104
[13] Sawan M E 2012 Fusion Eng. Deg. 87 551
[14] Krsjak V, Degmova J, Sojak S and Slugen V 2018 J. Nucl. Mater. 499 38
[15] Degmova J, Krsjak V, Shen T L, Veternikova J S, Gatciova A, Sojak S and Hruska P 2021 Appl. Surf. Sci. 538 148004
[16] Li L, Jin S X, Zhang P, Wang D D, Cao X Z, Guo L P, Xu Q, Li J, Zhang T M, Li L B and Wang B Y 2019 J. Nucl. Mater. 526 151748
[17] Zhu T, Jin S X, Zhang P, Song L G, Jian X Y, Fan P, Zhang X L, Yuan D Q, Wu H B, Yu R S, Cao X Z, Xu Q and Wang B Y 2018 J. Nucl. Mater. 505 69
[18] Li B S, Wang Z G, Wei K F, Shen T L, Yao C F, Zhang H P, Sheng Y B, Lu X R, Xiong An L and Han W T 2019 Fusion Eng. Deg. 142 6
[20] Yao Z, Mayoral M H, Jenkins M L and Kirk M A 2008 Philosoph. Mag. 88 28
[21] Bentzon M D and Tholen A R 1992 Nanostructured Materials 1 229
[22] Liu W B, Ji Y Z, Tan P K, Zhang C, He C H and Yang Z G 2016 J. Nucl. Mater. 479 323
[23] Li Q, Parish C M, Powers K A and Miller M K 2014 J. Nucl. Mater. 445 165
[24] Xia L D, Liu W B, Liu H P, Zhang J H, Chen H, Yang Z G and Zhang C 2018 Nucl. Eng. Technol. 50 132
[25] Wakai E, Sawai T, Furuya K, Naito A, Aruga T, Kikuchi K, Yamashita S, Ohnuki S, Yamamoto S, Naramoto H and Jistukawa S 2002 J. Nucl. Mater. 307-311 278
[26] Trinkaus H and Singh B N 2003 J. Nucl. Mater. 323 229
[27] Sun J J, Li B S, You Y W, Hou J, Xu Y C, Liu C S, Fang Q F and Wang Z G 2018 J. Nucl. Mater. 503 271
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[3] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[4] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[5] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[6] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[7] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[8] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[9] Nanoscale structural investigation of Zn1-xMgxO alloy films on polar and nonpolar ZnO substrates with different Mg contents
Xin Liang(梁信), Hua Zhou(周华), Hui-Qiong Wang(王惠琼), Lihua Zhang(张丽华), Kim Kisslinger, and Junyong Kang(康俊勇). Chin. Phys. B, 2021, 30(9): 096107.
[10] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[11] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
[12] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
[13] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[14] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[15] Leakage of an eagle flight feather and its influence on the aerodynamics
Di Tang (唐迪), Dawei Liu(刘大伟), Yin Yang(杨茵), Yang Li(李阳), Xipeng Huang(黄喜鹏), and Kai Liu(刘凯). Chin. Phys. B, 2021, 30(3): 034701.
No Suggested Reading articles found!