Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 028501    DOI: 10.1088/1674-1056/ac7f94
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Transition-edge sensors using Mo/Au/Au tri-layer films

Hubing Wang(王沪兵)1,2,3, Yue Lv(吕越)1,2,3, Dongxue Li(李冬雪)1,2, Yue Zhao(赵越)1,2,3, Bo Gao(高波)1,2,3,†, and Zhen Wang(王镇)1,2,3
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
2 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  The proximity effect to reduce the transition temperature of a superconducting film is frequently used in transition-edge sensors. Here, we develop these transition-edge sensors using Mo/Au/Au tri-layer films to detect soft x-rays. They are equipped with an overhanging photon absorber. We reduce the fabrication complexity by integrating the sensor patterning with the tri-layer film formation. We determine the electro-thermal parameters of the sensors through a series of resistance vs. temperature and current vs. voltage measurements. We also demonstrate their energy-resolving capability by using a 55Fe radioactive x-ray source. The best energy resolution was approximately 6.66 eV at 5.9 keV, with a theoretical count rate of 500 Hz.
Keywords:  transition-edge sensors      proximity effect      electroplating  
Received:  03 May 2022      Revised:  24 June 2022      Accepted manuscript online:  08 July 2022
PACS:  85.25.Oj (Superconducting optical, X-ray, and γ-ray detectors (SIS, NIS, transition edge))  
Fund: Project was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304000), the Shanghai Municipal Science and Technology Major Project (Grant No. 2017SHZDZX02), China National Space Administration (CNSA) (Grant No. D050104), and the grant for low energy gamma-ray detection research based on SQUID technique.
Corresponding Authors:  Bo Gao     E-mail:  bo_f_gao@mail.sim.ac.cn

Cite this article: 

Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇) Transition-edge sensors using Mo/Au/Au tri-layer films 2023 Chin. Phys. B 32 028501

[1] Irwin K D and Hilton G C 2005 Cryogenic Particle Detection, Enss C (ed) (Berlin: Springer) pp. 63-150
[2] Gottardi L and Nagayashi K 2021 Appl. Sci. 11 3793
[3] Smith S J, Adams J S, Bandler S R, Beaumont S, Chervenak J A, Denison E V, Doriese W B, Durkin M, Finkbeiner F M and Fowler J W 2021 IEEE Trans. Appl. Supercond. 31 2100806
[4] Ullom J N and Bennett D A 2015 Superconduct. Sci. Technol. 28 084003
[5] Doriese W B, Abbamonte P, Alpert B K, Bennett D, Denison E, Fang Y, Fischer D, Fitzgerald C, Fowler J and Gard J 2017 Rev. Sci. Instrum. 88 053108
[6] Martinis J M, Hilton G C, Irwin K D and Wollman D A 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 444 23
[7] Wang Y, Liang Y, Ding J, Chen N, Chen Y, Cui W, Huang R, Li C, Li F and Liu J 2021 Superconduct. Sci. Technol. 35 025008
[8] Wang Y R, Wang S F, Li F J, et al. 2020 Proc. SPIE 11444 1369
[9] Miniussi A R, Adams J S, Bandler S R, Chervenak J A, Datesman A M, Eckart M E, Ewin A J, Finkbeiner F M, Kelley R L and Kilbourne C A 2018 J. Low Temp. Phys. 193 337
[10] Chervenak J A, Finkbeiner F M, Stevenson T R, Talley D J, Brekosky R P, Bandler S R, Figueroa-Feliciano E, Lindeman M A, Kelley R L, Saab T and Stahle C K 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 520 460
[11] Finkbeiner F M, Adams J S, Bandler S R, Betancourt-Martinez G L, Brown A D, Chang M-P, Chervenak J A, Chiao M P, Datesman A M and Eckart M E 2016 IEEE Trans. Appl. Supercond. 27 2100104
[12] Weber J C, Morgan K M, Yan D, Pappas C G and Schmidt D R 2020 Superconduct. Sci. Technol. 33 115002
[13] Fabrega L, Fernandez-Martinez I, Gil O, Parra-Borderias M, Camon A, Costa-Kramer J L, Gonzalez-Arrabal R, Sese J, Briones F and Santiso J 2009 IEEE Trans. Appl. Supercond. 19 460
[14] Fábrega L, Camón A, Fernndez-Martínez I, Sesé J, Parra-Borderías M, Gil O, Gonzlez-Arrabal R, Costa-Krämer J L and Briones F 2011 Superconduct. Sci. Technol. 24 075014
[15] Henke B L, Gullikson E M and Davis J C 1993 At. Data Nucl. Data Tables 54 181
[16] Ridder M, Khosropanah P, Hijmering R, Suzuki T, Bruijn M, Hoevers H, Gao J and Zuiddam M 2016 J. Low Temp. Phys. 184 60
[17] Xu T, Tao Z, Li H, Tan X and Li H 2017 Adv. Mech. Eng. 9 168781401773815
[18] Lee S J, Adams J S, Bandler S R, Chervenak J A, Eckart M E, Finkbeiner F M, Kelley R L, Kilbourne C A, Porter F S and Sadleir J E 2015 Appl. Phys. Lett. 107 223503
[19] Bailey C N, Adams J S, Bandler S R, Brekosky R P, Chervenak J A, Eckart M E, Finkbeiner F M, Kelley R L, Kelly D P and Kilbourne C A 2012 J. Low Temp. Phys. 167 121
[20] Szymkowiak A E, Kelley R L, Moseley S H and Stahle C K 1993 J. Low Temp. Phys. 93 281
[21] Hlzer G, Fritsch M, Deutsch M, Hrtwig J and Frster E 1997 Phys. Rev. A 56 4554
[22] Lindeman M A, Bandler S, Brekosky R P, Chervenak J A, Figueroa-Feliciano E, Finkbeiner F M, Li M J and Kilbourne C A 2004 Rev. Sci. Instrum. 75 1283
[23] Ullom J N, Doriese W B, Hilton G C, Beall J A, Deiker S, Irwin K D, Reintsema C D, Vale L R and Xu Y 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 520 333
[1] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[2] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[3] Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures
Danliang Zhang(张丹亮), Chen Yi(易琛), Cuihuan Ge(葛翠环), Weining Shu(舒维宁), Bo Li(黎博), Xidong Duan(段曦东), Anlian Pan(潘安练), and Xiao Wang(王笑). Chin. Phys. B, 2021, 30(9): 097601.
[4] Magnetic field enhanced single particle tunneling in MoS2-superconductor vertical Josephson junction
Wen-Zheng Xu(徐文正), Lai-Xiang Qin(秦来香), Xing-Guo Ye(叶兴国), Fang Lin(林芳), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2020, 29(5): 057502.
[5] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[6] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[7] Superconductivity of bilayer titanium/indium thin film grown on SiO2/Si (001)
Zhao-Hong Mo(莫钊洪), Chao Lu(路超), Yi Liu(刘毅), Wei Feng(冯卫), Yun Zhang(张云), Wen Zhang(张文), Shi-Yong Tan(谭世勇), Hong-Jun Zhang(张宏俊), Chun-Yu Guo(郭春煜), Xiao-Dong Wang(汪小冬), Liang Wang(王亮), Rui-Zhu Yang(杨蕊竹), Zhong-Guo Ren(任忠国), Xie-Gang Zhu(朱燮刚), Zhong-Hua Xiong(熊忠华), Qi An(安琪), Xin-Chun Lai(赖新春). Chin. Phys. B, 2018, 27(6): 067403.
[8] Characteristic improvements of thin film AlGaInP red light emitting diodes on a metallic substrate
Bin Zhao(赵斌), Wei Hu(胡巍), Xian-Sheng Tang(唐先胜), Wen-Xue Huo(霍雯雪), Li-Li Han(韩丽丽), Ming-Long Zhao(赵明龙), Zi-Guang Ma(马紫光), Wen-Xin Wang(王文新), Hai-Qiang Jia(贾海强), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(4): 047803.
[9] The origin of spin current in YIG/nonmagnetic metal multilayers at ferromagnetic resonance
Yun Kang(康韵), Hai Zhong(钟海), Runrun Hao(郝润润), Shujun Hu(胡树军), Shishou Kang(康仕寿), Guolei Liu(刘国磊), Yin Zhang(张引), Xiangrong Wang(王向荣), Shishen Yan(颜世申), Yong Wu(吴勇), Shuyun Yu(于淑云), Guangbing Han(韩广兵), Yong Jiang(姜勇), Liangmo Mei(梅良模). Chin. Phys. B, 2017, 26(4): 047202.
[10] Spatially resolved gap closing in single Josephson junctions constructed on Bi2Te3 surface
Yuan Pang(庞远), Junhua Wang(王骏华), Zhaozheng Lyu(吕昭征), Guang Yang(杨光), Jie Fan(樊洁), Guangtong Liu(刘广同), Zhongqing Ji(姬忠庆), Xiunian Jing(景秀年), Changli Yang(杨昌黎), Li Lu(吕力). Chin. Phys. B, 2016, 25(11): 117402.
[11] The stability of Majorana fermion in correlated quantum wire
Zhang De-Ping (张德平), Tian Guang-Shan (田光善). Chin. Phys. B, 2015, 24(8): 080401.
[12] Spin transport in a Zigzag normal/ferromagnetic graphene junction
Shi Hao-Sheng (史豪晟), Vahram L. Grigoryan. Chin. Phys. B, 2015, 24(5): 057202.
[13] Performance improvement of GaN-based light-emitting diodes transferred from Si (111) substrate onto electroplating Cu submount with embedded wide p-electrodes
Liu Ming-Gang (柳铭岗), Wang Yun-Qian (王云茜), Yang Yi-Bin (杨亿斌), Lin Xiu-Qi (林秀其), Xiang Peng (向鹏), Chen Wei-Jie (陈伟杰), Han Xiao-Biao (韩小标), Zang Wen-Jie (臧文杰), Liao Qiang (廖强), Lin Jia-Li (林佳利), Luo Hui (罗慧), Wu Zhi-Sheng (吴志盛), Liu Yang (刘扬), Zhang Bai-Jun (张佰君). Chin. Phys. B, 2015, 24(3): 038503.
[14] Proximity effects in topological insulator heterostructures
Li Xiao-Guang (李晓光), Zhang Gu-Feng (张谷丰), Wu Guang-Fen (武光芬), Chen Hua (陈铧), Dimitrie Culcer, Zhang Zhen-Yu(张振宇). Chin. Phys. B, 2013, 22(9): 097306.
[15] Transport properties of topological insulators films and nanowires
Liu Yi (刘易), Ma Zheng (马铮), Zhao Yan-Fei (赵弇斐), Meenakshi Singh, Wang Jian (王健). Chin. Phys. B, 2013, 22(6): 067302.
No Suggested Reading articles found!