INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Transition-edge sensors using Mo/Au/Au tri-layer films |
Hubing Wang(王沪兵)1,2,3, Yue Lv(吕越)1,2,3, Dongxue Li(李冬雪)1,2, Yue Zhao(赵越)1,2,3, Bo Gao(高波)1,2,3,†, and Zhen Wang(王镇)1,2,3 |
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 2 CAS Center for Excellence in Superconducting Electronics(CENSE), Shanghai 200050, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The proximity effect to reduce the transition temperature of a superconducting film is frequently used in transition-edge sensors. Here, we develop these transition-edge sensors using Mo/Au/Au tri-layer films to detect soft x-rays. They are equipped with an overhanging photon absorber. We reduce the fabrication complexity by integrating the sensor patterning with the tri-layer film formation. We determine the electro-thermal parameters of the sensors through a series of resistance vs. temperature and current vs. voltage measurements. We also demonstrate their energy-resolving capability by using a 55Fe radioactive x-ray source. The best energy resolution was approximately 6.66 eV at 5.9 keV, with a theoretical count rate of 500 Hz.
|
Received: 03 May 2022
Revised: 24 June 2022
Accepted manuscript online: 08 July 2022
|
PACS:
|
85.25.Oj
|
(Superconducting optical, X-ray, and γ-ray detectors (SIS, NIS, transition edge))
|
|
Fund: Project was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304000), the Shanghai Municipal Science and Technology Major Project (Grant No. 2017SHZDZX02), China National Space Administration (CNSA) (Grant No. D050104), and the grant for low energy gamma-ray detection research based on SQUID technique. |
Corresponding Authors:
Bo Gao
E-mail: bo_f_gao@mail.sim.ac.cn
|
Cite this article:
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇) Transition-edge sensors using Mo/Au/Au tri-layer films 2023 Chin. Phys. B 32 028501
|
[1] Irwin K D and Hilton G C 2005 Cryogenic Particle Detection, Enss C (ed) (Berlin: Springer) pp. 63-150 [2] Gottardi L and Nagayashi K 2021 Appl. Sci. 11 3793 [3] Smith S J, Adams J S, Bandler S R, Beaumont S, Chervenak J A, Denison E V, Doriese W B, Durkin M, Finkbeiner F M and Fowler J W 2021 IEEE Trans. Appl. Supercond. 31 2100806 [4] Ullom J N and Bennett D A 2015 Superconduct. Sci. Technol. 28 084003 [5] Doriese W B, Abbamonte P, Alpert B K, Bennett D, Denison E, Fang Y, Fischer D, Fitzgerald C, Fowler J and Gard J 2017 Rev. Sci. Instrum. 88 053108 [6] Martinis J M, Hilton G C, Irwin K D and Wollman D A 2000 Nucl. Instrum. Methods Phys. Res., Sect. A 444 23 [7] Wang Y, Liang Y, Ding J, Chen N, Chen Y, Cui W, Huang R, Li C, Li F and Liu J 2021 Superconduct. Sci. Technol. 35 025008 [8] Wang Y R, Wang S F, Li F J, et al. 2020 Proc. SPIE 11444 1369 [9] Miniussi A R, Adams J S, Bandler S R, Chervenak J A, Datesman A M, Eckart M E, Ewin A J, Finkbeiner F M, Kelley R L and Kilbourne C A 2018 J. Low Temp. Phys. 193 337 [10] Chervenak J A, Finkbeiner F M, Stevenson T R, Talley D J, Brekosky R P, Bandler S R, Figueroa-Feliciano E, Lindeman M A, Kelley R L, Saab T and Stahle C K 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 520 460 [11] Finkbeiner F M, Adams J S, Bandler S R, Betancourt-Martinez G L, Brown A D, Chang M-P, Chervenak J A, Chiao M P, Datesman A M and Eckart M E 2016 IEEE Trans. Appl. Supercond. 27 2100104 [12] Weber J C, Morgan K M, Yan D, Pappas C G and Schmidt D R 2020 Superconduct. Sci. Technol. 33 115002 [13] Fabrega L, Fernandez-Martinez I, Gil O, Parra-Borderias M, Camon A, Costa-Kramer J L, Gonzalez-Arrabal R, Sese J, Briones F and Santiso J 2009 IEEE Trans. Appl. Supercond. 19 460 [14] Fábrega L, Camón A, Fernndez-Martínez I, Sesé J, Parra-Borderías M, Gil O, Gonzlez-Arrabal R, Costa-Krämer J L and Briones F 2011 Superconduct. Sci. Technol. 24 075014 [15] Henke B L, Gullikson E M and Davis J C 1993 At. Data Nucl. Data Tables 54 181 [16] Ridder M, Khosropanah P, Hijmering R, Suzuki T, Bruijn M, Hoevers H, Gao J and Zuiddam M 2016 J. Low Temp. Phys. 184 60 [17] Xu T, Tao Z, Li H, Tan X and Li H 2017 Adv. Mech. Eng. 9 168781401773815 [18] Lee S J, Adams J S, Bandler S R, Chervenak J A, Eckart M E, Finkbeiner F M, Kelley R L, Kilbourne C A, Porter F S and Sadleir J E 2015 Appl. Phys. Lett. 107 223503 [19] Bailey C N, Adams J S, Bandler S R, Brekosky R P, Chervenak J A, Eckart M E, Finkbeiner F M, Kelley R L, Kelly D P and Kilbourne C A 2012 J. Low Temp. Phys. 167 121 [20] Szymkowiak A E, Kelley R L, Moseley S H and Stahle C K 1993 J. Low Temp. Phys. 93 281 [21] Hlzer G, Fritsch M, Deutsch M, Hrtwig J and Frster E 1997 Phys. Rev. A 56 4554 [22] Lindeman M A, Bandler S, Brekosky R P, Chervenak J A, Figueroa-Feliciano E, Finkbeiner F M, Li M J and Kilbourne C A 2004 Rev. Sci. Instrum. 75 1283 [23] Ullom J N, Doriese W B, Hilton G C, Beall J A, Deiker S, Irwin K D, Reintsema C D, Vale L R and Xu Y 2004 Nucl. Instrum. Methods Phys. Res. Sect. A 520 333 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|