Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067403    DOI: 10.1088/1674-1056/27/6/067403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Superconductivity of bilayer titanium/indium thin film grown on SiO2/Si (001)

Zhao-Hong Mo(莫钊洪)1,2, Chao Lu(路超)1, Yi Liu(刘毅)1, Wei Feng(冯卫)1, Yun Zhang(张云)1, Wen Zhang(张文)1, Shi-Yong Tan(谭世勇)1, Hong-Jun Zhang(张宏俊)1, Chun-Yu Guo(郭春煜)3, Xiao-Dong Wang(汪小冬)1, Liang Wang(王亮)1, Rui-Zhu Yang(杨蕊竹)1, Zhong-Guo Ren(任忠国)1, Xie-Gang Zhu(朱燮刚)1, Zhong-Hua Xiong(熊忠华)1, Qi An(安琪)2, Xin-Chun Lai(赖新春)4
1 Institute of Materials, China Academy of Engineering Physics, Jiangyou 621908, China;
2 Department of Engineering and Applied Physics, School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China;
3 Zhejiang University, Hangzhou 310058, China;
4 China Academy of Engineering Physics, Mianyang 621000, China
Abstract  Bilayer superconducting films with tunable transition temperature (Tc) are a critical ingredient to the fabrication of high-performance transition edge sensors. Commonly chosen materials include Mo/Au, Mo/Cu, Ti/Au, and Ti/Al systems. Here in this work, titanium/indium (Ti/In) bilayer superconducting films are successfully fabricated on SiO2/Si (001) substrates by molecular beam epitaxy (MBE). The success in the epitaxial growth of indium on titanium is achieved by lowering the substrate temperature to -150℃ during indium evaporation. We measure the critical temperature under a bias current of 10 μA, and obtain different superconducting transition temperatures ranging from 645 mK to 2.7 K by adjusting the thickness ratio of Ti/In. Our results demonstrate that the transition temperature decreases as the thickness ratio of Ti/In increases.
Keywords:  titanium/indium thin film      molecular beam epitaxy (MBE)      proximity effect  
Received:  07 February 2017      Revised:  20 March 2018      Accepted manuscript online: 
PACS:  74.78.-w (Superconducting films and low-dimensional structures)  
Corresponding Authors:  Xie-Gang Zhu, Xin-Chun Lai     E-mail:  zhuxg02@gmail.com;laixinchun@caep.cn

Cite this article: 

Zhao-Hong Mo(莫钊洪), Chao Lu(路超), Yi Liu(刘毅), Wei Feng(冯卫), Yun Zhang(张云), Wen Zhang(张文), Shi-Yong Tan(谭世勇), Hong-Jun Zhang(张宏俊), Chun-Yu Guo(郭春煜), Xiao-Dong Wang(汪小冬), Liang Wang(王亮), Rui-Zhu Yang(杨蕊竹), Zhong-Guo Ren(任忠国), Xie-Gang Zhu(朱燮刚), Zhong-Hua Xiong(熊忠华), Qi An(安琪), Xin-Chun Lai(赖新春) Superconductivity of bilayer titanium/indium thin film grown on SiO2/Si (001) 2018 Chin. Phys. B 27 067403

[1] Zhang Q Y, Liu J S, Dong W H, Wang T S, He G F, Li T F, Zhou X X and Chen W 2014 Chin. Sci. Bull. 59 2292
[2] Zhang L, Zhao Q, Zhong Y, Chen J, Cao C, Xu W, Kang L, Wu P and Shi W 2009 Appl. Phys. B 97 187
[3] Liu J, Zhang L Q, Jiang Z N, Kamal Ahmad, Liu J S and Chen W 2016 Chin. Phys. Lett. 33 088502
[4] Liu X, Guo W, Wang Y, Dai M, Wei L F, Dober B, McKenney C M, Hilton G C, Hubmayr J, Austermann J E, Ullom J N, Gao J and Vissers M R 2017 Appl. Phys. Lett. 111 252601
[5] Guo S B, Zhong K, Wang M R, Liu C, Xiao Y, Wang W P, Xu D G and Yao J Q 2017 Chin. Phys. B 26 019501
[6] Wang T S, Chen J K, Zhang Q Y, Li T F, Liu J S, Chen W and Zhou X 2013 Nucl. Instrum. Methods Phys. Res. A 729 474
[7] Li H, Wang Y, Wei L, Zhou P, Wei Q, Cao C, Fang Y, Yu Y and Wu P 2013 Chin. Sci. Bull. 58 2413
[8] Na Z, Liu J S, LI H, LI T F and Chen W 2012 Chih. Phys. Lett. 29 088401
[9] You L X, Shen X F and Yang X Y 2010 Chin. Sci. Bull. 55 441
[10] Wang J P, Li Y B, Kang L, Wang Y, Zhong Y Y, Liang M, Chen J, Cao C H, Xu W W and Wu P H 2009 Chin. Sci. Bull. 54 2013
[11] Zhang Q Y, Wang T S, Liu J S, Dong W H, He G F, Li T F, Zhou X X and Chen W 2014 Chin. Phys. B 23 118502
[12] Guo W, Liu X, Wang Y, Wei Q, Wei L F, Hubmayr J, Fowler J, Ullom J, Vale L, Vissers M R and Gao J 2017 Appl. Phys. Lett. 110 212601
[13] Zhou P J, Wang Y W and Wei L F 2014 Chih. Phys. Lett. 31 067402
[14] He Y H, Lv C L, Zhang W J, Zhang L, Wu J J, Chen S J, You L X and Wang Z 2015 Chin. Phys. B 24 060303
[15] Zhang C and Jiao R Z 2012 Chin. Phys. B 21 120306
[16] Jaeckel F T, Kripps K L, Morgan K M, Zhang S and McCammon D 2016 J. Low Temp. Phys. 184 647
[17] Wang G, Yefremenko V, Chang C L, Novosad V, Mehl J, Pearson J, Divan R and Carlstrom J E 2013 IEEE Trans. Appl. Supercond. 23 2101605.
[18] Glowacka D M, Goldie D J and Withington S 2010 21st International Symposium on Space Terahertz Technology, March 23-25, 2010, Oxford p. 276
[19] Gonzalez-Arrabal R, Camón A, Parra-Borderías M, Fabrega L, Anguita J, Sesé J and Briones F 2008 J. Low Temp. Phys. 151 239.
[20] Ali Z A, Drury O B, Cunningham M F, Chesser J M, Jr T W B and Friedrich S 2005 IEEE Trans. Appl. Supercond. 15 526
[21] Olsen J, Kirk E C, Thomsen K, Brandt V D, Lerch P, Scandella L, Zehnder A, Mango S, H R Ott, Huber M, Hilton G C and Martinis J M 2000 Nucl. Instrum. Methods Phys. Res. A 444 253
[22] Toxen A M 1961 Phys. Rev. 123 442
[23] Sadleir J E 2010 "Superconducting Transition-edge Sensor Physics", Ph. D. Dissertation (Illinois:University of Illinois at Urbana-Champaign)
[24] Yu H L and Dong Z C 2007 Chin. Phys. B 16 3072
[25] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 106 162
[26] Martinis J M, Hilton G C, Irwin K D and Wollman D A 2000 Nucl. Instrum. Methods Phys. Res. A 444 23
[1] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[2] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[3] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[4] Plasma assisted molecular beam epitaxial growth of GaN with low growth rates and their properties
Zhen-Hua Li(李振华), Peng-Fei Shao(邵鹏飞), Gen-Jun Shi(施根俊), Yao-Zheng Wu(吴耀政), Zheng-Peng Wang(汪正鹏), Si-Qi Li(李思琦), Dong-Qi Zhang(张东祺), Tao Tao(陶涛), Qing-Jun Xu(徐庆君), Zi-Li Xie(谢自力), Jian-Dong Ye(叶建东), Dun-Jun Chen(陈敦军), Bin Liu(刘斌), Ke Wang(王科), You-Dou Zheng(郑有炓), and Rong Zhang(张荣). Chin. Phys. B, 2022, 31(1): 018102.
[5] Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures
Danliang Zhang(张丹亮), Chen Yi(易琛), Cuihuan Ge(葛翠环), Weining Shu(舒维宁), Bo Li(黎博), Xidong Duan(段曦东), Anlian Pan(潘安练), and Xiao Wang(王笑). Chin. Phys. B, 2021, 30(9): 097601.
[6] Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers
Yong Li(李勇), Xiao-Ming Li(李晓明), Rui-Ting Hao(郝瑞亭), Jie Guo(郭杰), Yu Zhuang(庄玉), Su-Ning Cui(崔素宁), Guo-Shuai Wei(魏国帅), Xiao-Le Ma(马晓乐), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川), and Yao Wang(王耀). Chin. Phys. B, 2021, 30(2): 028504.
[7] Magnetic field enhanced single particle tunneling in MoS2-superconductor vertical Josephson junction
Wen-Zheng Xu(徐文正), Lai-Xiang Qin(秦来香), Xing-Guo Ye(叶兴国), Fang Lin(林芳), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2020, 29(5): 057502.
[8] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[9] Electronic structure of molecular beam epitaxy grown 1T'-MoTe2 film and strain effect
Xue Zhou(周雪), Zeyu Jiang(姜泽禹), Kenan Zhang(张柯楠), Wei Yao(姚维), Mingzhe Yan(颜明哲), Hongyun Zhang(张红云), Wenhui Duan(段文晖), Shuyun Zhou(周树云). Chin. Phys. B, 2019, 28(10): 107307.
[10] 1.3-μm InAs/GaAs quantum dots grown on Si substrates
Fu-Hui Shao(邵福会), Yi Zhang(张一), Xiang-Bin Su(苏向斌), Sheng-Wen Xie(谢圣文), Jin-Ming Shang(尚金铭), Yun-Hao Zhao(赵云昊), Chen-Yuan Cai(蔡晨元), Ren-Chao Che(车仁超), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(12): 128105.
[11] The origin of spin current in YIG/nonmagnetic metal multilayers at ferromagnetic resonance
Yun Kang(康韵), Hai Zhong(钟海), Runrun Hao(郝润润), Shujun Hu(胡树军), Shishou Kang(康仕寿), Guolei Liu(刘国磊), Yin Zhang(张引), Xiangrong Wang(王向荣), Shishen Yan(颜世申), Yong Wu(吴勇), Shuyun Yu(于淑云), Guangbing Han(韩广兵), Yong Jiang(姜勇), Liangmo Mei(梅良模). Chin. Phys. B, 2017, 26(4): 047202.
[12] Spatially resolved gap closing in single Josephson junctions constructed on Bi2Te3 surface
Yuan Pang(庞远), Junhua Wang(王骏华), Zhaozheng Lyu(吕昭征), Guang Yang(杨光), Jie Fan(樊洁), Guangtong Liu(刘广同), Zhongqing Ji(姬忠庆), Xiunian Jing(景秀年), Changli Yang(杨昌黎), Li Lu(吕力). Chin. Phys. B, 2016, 25(11): 117402.
[13] The stability of Majorana fermion in correlated quantum wire
Zhang De-Ping (张德平), Tian Guang-Shan (田光善). Chin. Phys. B, 2015, 24(8): 080401.
[14] Spin transport in a Zigzag normal/ferromagnetic graphene junction
Shi Hao-Sheng (史豪晟), Vahram L. Grigoryan. Chin. Phys. B, 2015, 24(5): 057202.
[15] Proximity effects in topological insulator heterostructures
Li Xiao-Guang (李晓光), Zhang Gu-Feng (张谷丰), Wu Guang-Fen (武光芬), Chen Hua (陈铧), Dimitrie Culcer, Zhang Zhen-Yu(张振宇). Chin. Phys. B, 2013, 22(9): 097306.
No Suggested Reading articles found!