CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
The origin of spin current in YIG/nonmagnetic metal multilayers at ferromagnetic resonance |
Yun Kang(康韵)1, Hai Zhong(钟海)1, Runrun Hao(郝润润)1, Shujun Hu(胡树军)1, Shishou Kang(康仕寿)1, Guolei Liu(刘国磊)1, Yin Zhang(张引)2, Xiangrong Wang(王向荣)2, Shishen Yan(颜世申)1, Yong Wu(吴勇)3, Shuyun Yu(于淑云)1, Guangbing Han(韩广兵)1, Yong Jiang(姜勇)3, Liangmo Mei(梅良模)1 |
1 School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China; 2 Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; 3 State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract Spin pumping in yttrium-iron-garnet (YIG)/nonmagnetic-metal (NM) layer systems under ferromagnetic resonance (FMR) conditions is a popular method of generating spin current in the NM layer. A good understanding of the spin current source is essential in extracting spin Hall angle of the NM and in potential spintronics applications. It is widely believed that spin current is pumped from precessing YIG magnetization into NM layer. Here, by combining microwave absorption and DC-voltage measurements on thin YIG/Pt and YIG/NM1/NM2 (NM1=Cu or Al, NM2=Pt or Ta), we unambiguously showed that spin current in NM, instead of from the precessing YIG magnetization, came from the magnetized NM surface (in contact with thin YIG), either due to the magnetic proximity effect (MPE) or from the inevitable diffused Fe ions from YIG to NM. This conclusion is reached through analyzing the FMR microwave absorption peaks with the DC-voltage peak from the inverse spin Hall effect (ISHE). The voltage signal is attributed to the magnetized NM surface, hardly observed in the conventional FMR experiments, and was greatly amplified when the electrical detection circuit was switched on.
|
Received: 27 February 2017
Revised: 06 March 2017
Accepted manuscript online:
|
PACS:
|
72.25.Mk
|
(Spin transport through interfaces)
|
|
75.70.-i
|
(Magnetic properties of thin films, surfaces, and interfaces)
|
|
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921502 and 2013CB922303), the National Natural Science Foundation of China (Grant Nos. 11474184, 116627805, and 11504203), and the 111 Project (Grant No. B13029). Zhang Yin and Wang Xiangrong were supported by the Hong Kong RGC Grants (Grant Nos. 16301816 and 605413). Wu Yong and Jiang Yong were supported by the National Natural Science Foundation of China (Grant No. 51501007). |
Corresponding Authors:
Shishou Kang, Xiangrong Wang
E-mail: skang@sdu.edu.cn;phxwan@ust.hk
|
Cite this article:
Yun Kang(康韵), Hai Zhong(钟海), Runrun Hao(郝润润), Shujun Hu(胡树军), Shishou Kang(康仕寿), Guolei Liu(刘国磊), Yin Zhang(张引), Xiangrong Wang(王向荣), Shishen Yan(颜世申), Yong Wu(吴勇), Shuyun Yu(于淑云), Guangbing Han(韩广兵), Yong Jiang(姜勇), Liangmo Mei(梅良模) The origin of spin current in YIG/nonmagnetic metal multilayers at ferromagnetic resonance 2017 Chin. Phys. B 26 047202
|
[1] |
Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
|
[2] |
žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
|
[3] |
Urban R, Woltersdorf G and Heinrich B 2001 Phys. Rev. Lett. 87 217204
|
[4] |
Mizukami S, Ando Y and Miyazaki T 2002 Phys. Rev. B 66 104413
|
[5] |
Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. Lett. 88 117601
|
[6] |
Brataas A, Tserkovnyak Y, Bauer G E W and Halperin B I 2002 Phys. Rev. B 66 060404
|
[7] |
Heinrich B, Tserkovnyak Y, Woltersdorf G, Brataas A, Urban R and Bauer G E W 2003 Phys. Rev. Lett. 90 187601
|
[8] |
Zhang Y, Zhang H W and Wang X R 2016 Europhys. Lett. 113 47003
|
[9] |
Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S and Saitoh E 2010 Nature 464 262
|
[10] |
Ando K, Takahashi S, Leda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S and Saitoh E 2011 J. Appl. Phys. 109 103913
|
[11] |
Takahashi R, Lguchi R, Nakayama H, Yoshino T and Saitoh E 2012 J. Appl. Phys. 111 07C307
|
[12] |
Du C H, Wang H L, Pu Y, Meyer T L, Woodward P M, Yang F Y and Hammel P C 2013 Phys. Rev. Lett. 111 247202
|
[13] |
Sandweg C W, Kajiwara Y, Chumak A V, Serga A A, Vasyuchka V I, Jungfleisch M B, Saitoh E and Hillebrands B 2011 Phys. Rev. Lett. 106 216601
|
[14] |
Castel V, Vlietstra N, Ben Youssef J and van Wees B 2012 Appl. Phys. Lett. 101 132414
|
[15] |
Hahn C, de Loubens G, Klein O, Viret M, Naletov V V and Ben Youssef J 2013 Phys. Rev. B 87 174417
|
[16] |
Wang H L, Du C H, Pu Y, Adur R, Hammel P C and Yang F Y 2014 Phys. Rev. Lett. 112 197201
|
[17] |
Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213
|
[18] |
Antel W J, Schwickert M M, Tao L, O'Brien W L and Harp G R 1999 Phys. Rev. B 60 12933
|
[19] |
Wilhelm F, Poulopoulos P, Ceballos G, Wende H, Baberschke K, Srivastave P, Benea D, Ebert H, Angelakeris M, Flevaris N K, Niarchos D, Rogalev A and Brookes N B 2000 Phys. Rev. Lett. 85 413
|
[20] |
Huang S Y, Fan X, Qu D, Chen Y P, Wang W G, Wu J, Chen T Y, Xiao J Q and Chien C L 2012 Phys. Rev. Lett. 109 107204
|
[21] |
Lu Y M, Choi Y, Ortega C M, Cheng X M, Cai J W, Huang S Y, Sun L and Chien C L 2013 Phys. Rev. Lett. 110 147207
|
[22] |
Guo G Y, Niu Q and Nagaosa N 2014 Phys. Rev. B 89 214406
|
[23] |
Ryu K S, Yang S H, Thomas L and Parkin S S P 2014 Nat. Commun. 5 3910
|
[24] |
Zhou X, Ma L, Shi Z, Guo G Y, Hu J, Wu R Q and Zhou S M 2014 Appl. Phys. Lett. 105 012408
|
[25] |
Mattias K 2016 "Magnonic spin currents in insulating ferrimagnets – bulk versus interface effects", Insulatronics 2016, Longyearbyen, Svalbard, May 27-31, 2016; pravite communication
|
[26] |
Stutzman W L and Thiele G A 1981 Antenna Theory and Design (Hokoben: John Wiley & Sons) p. 271
|
[27] |
Saitoh E, Ueda M, Miyajima H and Tatara G 2006 Appl. Phys. Lett. 88 182509
|
[28] |
Zhang Y, Wang W S, Yuan H Y, Kang S S, Zhang H W and Wang X R 2017 J. Phys.: Condens. Matter 29 095806
|
[29] |
Mecking N, Gui Y S and Hu C M 2007 Phys. Rev. B 76 224430
|
[30] |
Azevedo A, Vilela-Leão L H, Rodríguez-Suárez R L, Lacerda Santos A F and Rezende S M 2011 Phys. Rev. B 83 144402
|
[31] |
Sun Y Y, Chang H C, Kabatek M, Song Y Y, Wang Z H, Jantz M, Schneider W, Wu M Z, Montoya E, Kardasz B, Heinrich B, te Velthuis S G E, Schultheiss H and Hoffmann A 2013 Phys. Rev. Lett. 111 106601
|
[32] |
Kittel C 1948 Phys. Rev. 73 155
|
[33] |
Jiang S W, Liu S, Wang P, Luan Z Z, Tao X D, Ding H F and Wu D 2015 Phys. Rev. Lett. 115 086601
|
[34] |
Rao J W, Fan X L, Ma L, Zhou H G, Zhao X B, Zhao J, Zhang F Z, Zhou S M and Xue D S 2015 J. Appl. Phys. 117 17C725
|
[35] |
Carbone C, Vescovo E, Rader O, Gudat W and Eberhardt W 1993 Phys. Rev. Lett. 71 2805
|
[36] |
Garrison K, Chang Y and Johnson P D 1993 Phys. Rev. Lett. 71 2801
|
[37] |
Pizzini S, Fontaine A, Giorgetti C and Dartyge E 1995 Phys. Rev. Lett. 74 1470
|
[38] |
Hirai K 2004 Physica B 345 209
|
[39] |
Jiao H and Bauer G E W 2013 Phys. Rev. Lett. 110 217602
|
[40] |
Carver K R and Mink J W 1981 IEEE Trans. Anten. Propag. AP-29 2
|
[41] |
Lin T, Tang C, Alyahayaei A M and Shi J 2014 Phys. Rev. Lett. 113 037203
|
[42] |
Sandweg C W, Kajiwara Y, Ando K, Saitoh E and Hillebrands B 2010 Appl. Phys. Lett. 97 252504
|
[43] |
Du C H, Wang H L, Pu Y, Meyer T L, Woodward P M, Yang F Y and Hammel P C 2013 Phys. Rev. Lett. 111 247202
|
[44] |
Wang H L, Du C H, Hammel P C and Yang F Y 2014 Phys. Rev. Lett. 113 097202
|
[45] |
Chumak A V, Serga A A, Jungfleisch M B, Neb R, Bozhko D A, Tiberkevich V S and Hillebrands B 2012 Appl. Phys. Lett. 100 082405
|
[46] |
Sandweg C W, Kajiwara Y, Chumak A V, Serga A A, Vasyuchka V I, Jungfleisch M B, Saitoh E and Hillebrands B 2011 Phys. Rev. Lett. 106 216601
|
[47] |
Collet M, de Milly X, d'Allivy Kelly O, Naletov V V, Bernard R, Bortolotti P, Ben Youssef J, Demidov V E, Demokritov S O, Prieto J L, M. Muñoz, Cros V, Anane A, de Loubens G and Klein O 2016 Nat. Commun. 7 10377
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|