Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 047202    DOI: 10.1088/1674-1056/26/4/047202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The origin of spin current in YIG/nonmagnetic metal multilayers at ferromagnetic resonance

Yun Kang(康韵)1, Hai Zhong(钟海)1, Runrun Hao(郝润润)1, Shujun Hu(胡树军)1, Shishou Kang(康仕寿)1, Guolei Liu(刘国磊)1, Yin Zhang(张引)2, Xiangrong Wang(王向荣)2, Shishen Yan(颜世申)1, Yong Wu(吴勇)3, Shuyun Yu(于淑云)1, Guangbing Han(韩广兵)1, Yong Jiang(姜勇)3, Liangmo Mei(梅良模)1
1 School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, China;
2 Physics Department, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China;
3 State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Abstract  Spin pumping in yttrium-iron-garnet (YIG)/nonmagnetic-metal (NM) layer systems under ferromagnetic resonance (FMR) conditions is a popular method of generating spin current in the NM layer. A good understanding of the spin current source is essential in extracting spin Hall angle of the NM and in potential spintronics applications. It is widely believed that spin current is pumped from precessing YIG magnetization into NM layer. Here, by combining microwave absorption and DC-voltage measurements on thin YIG/Pt and YIG/NM1/NM2 (NM1=Cu or Al, NM2=Pt or Ta), we unambiguously showed that spin current in NM, instead of from the precessing YIG magnetization, came from the magnetized NM surface (in contact with thin YIG), either due to the magnetic proximity effect (MPE) or from the inevitable diffused Fe ions from YIG to NM. This conclusion is reached through analyzing the FMR microwave absorption peaks with the DC-voltage peak from the inverse spin Hall effect (ISHE). The voltage signal is attributed to the magnetized NM surface, hardly observed in the conventional FMR experiments, and was greatly amplified when the electrical detection circuit was switched on.
Keywords:  spin current      spin pumping      inverse spin Hall effect      magnetic proximity effect      magnetic insulator  
Received:  27 February 2017      Revised:  06 March 2017      Accepted manuscript online: 
PACS:  72.25.Mk (Spin transport through interfaces)  
  75.70.-i (Magnetic properties of thin films, surfaces, and interfaces)  
  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921502 and 2013CB922303), the National Natural Science Foundation of China (Grant Nos. 11474184, 116627805, and 11504203), and the 111 Project (Grant No. B13029). Zhang Yin and Wang Xiangrong were supported by the Hong Kong RGC Grants (Grant Nos. 16301816 and 605413). Wu Yong and Jiang Yong were supported by the National Natural Science Foundation of China (Grant No. 51501007).
Corresponding Authors:  Shishou Kang, Xiangrong Wang     E-mail:  skang@sdu.edu.cn;phxwan@ust.hk

Cite this article: 

Yun Kang(康韵), Hai Zhong(钟海), Runrun Hao(郝润润), Shujun Hu(胡树军), Shishou Kang(康仕寿), Guolei Liu(刘国磊), Yin Zhang(张引), Xiangrong Wang(王向荣), Shishen Yan(颜世申), Yong Wu(吴勇), Shuyun Yu(于淑云), Guangbing Han(韩广兵), Yong Jiang(姜勇), Liangmo Mei(梅良模) The origin of spin current in YIG/nonmagnetic metal multilayers at ferromagnetic resonance 2017 Chin. Phys. B 26 047202

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Molnár S V, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[2] žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[3] Urban R, Woltersdorf G and Heinrich B 2001 Phys. Rev. Lett. 87 217204
[4] Mizukami S, Ando Y and Miyazaki T 2002 Phys. Rev. B 66 104413
[5] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. Lett. 88 117601
[6] Brataas A, Tserkovnyak Y, Bauer G E W and Halperin B I 2002 Phys. Rev. B 66 060404
[7] Heinrich B, Tserkovnyak Y, Woltersdorf G, Brataas A, Urban R and Bauer G E W 2003 Phys. Rev. Lett. 90 187601
[8] Zhang Y, Zhang H W and Wang X R 2016 Europhys. Lett. 113 47003
[9] Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S and Saitoh E 2010 Nature 464 262
[10] Ando K, Takahashi S, Leda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S and Saitoh E 2011 J. Appl. Phys. 109 103913
[11] Takahashi R, Lguchi R, Nakayama H, Yoshino T and Saitoh E 2012 J. Appl. Phys. 111 07C307
[12] Du C H, Wang H L, Pu Y, Meyer T L, Woodward P M, Yang F Y and Hammel P C 2013 Phys. Rev. Lett. 111 247202
[13] Sandweg C W, Kajiwara Y, Chumak A V, Serga A A, Vasyuchka V I, Jungfleisch M B, Saitoh E and Hillebrands B 2011 Phys. Rev. Lett. 106 216601
[14] Castel V, Vlietstra N, Ben Youssef J and van Wees B 2012 Appl. Phys. Lett. 101 132414
[15] Hahn C, de Loubens G, Klein O, Viret M, Naletov V V and Ben Youssef J 2013 Phys. Rev. B 87 174417
[16] Wang H L, Du C H, Pu Y, Adur R, Hammel P C and Yang F Y 2014 Phys. Rev. Lett. 112 197201
[17] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213
[18] Antel W J, Schwickert M M, Tao L, O'Brien W L and Harp G R 1999 Phys. Rev. B 60 12933
[19] Wilhelm F, Poulopoulos P, Ceballos G, Wende H, Baberschke K, Srivastave P, Benea D, Ebert H, Angelakeris M, Flevaris N K, Niarchos D, Rogalev A and Brookes N B 2000 Phys. Rev. Lett. 85 413
[20] Huang S Y, Fan X, Qu D, Chen Y P, Wang W G, Wu J, Chen T Y, Xiao J Q and Chien C L 2012 Phys. Rev. Lett. 109 107204
[21] Lu Y M, Choi Y, Ortega C M, Cheng X M, Cai J W, Huang S Y, Sun L and Chien C L 2013 Phys. Rev. Lett. 110 147207
[22] Guo G Y, Niu Q and Nagaosa N 2014 Phys. Rev. B 89 214406
[23] Ryu K S, Yang S H, Thomas L and Parkin S S P 2014 Nat. Commun. 5 3910
[24] Zhou X, Ma L, Shi Z, Guo G Y, Hu J, Wu R Q and Zhou S M 2014 Appl. Phys. Lett. 105 012408
[25] Mattias K 2016 "Magnonic spin currents in insulating ferrimagnets – bulk versus interface effects", Insulatronics 2016, Longyearbyen, Svalbard, May 27-31, 2016; pravite communication
[26] Stutzman W L and Thiele G A 1981 Antenna Theory and Design (Hokoben: John Wiley & Sons) p. 271
[27] Saitoh E, Ueda M, Miyajima H and Tatara G 2006 Appl. Phys. Lett. 88 182509
[28] Zhang Y, Wang W S, Yuan H Y, Kang S S, Zhang H W and Wang X R 2017 J. Phys.: Condens. Matter 29 095806
[29] Mecking N, Gui Y S and Hu C M 2007 Phys. Rev. B 76 224430
[30] Azevedo A, Vilela-Leão L H, Rodríguez-Suárez R L, Lacerda Santos A F and Rezende S M 2011 Phys. Rev. B 83 144402
[31] Sun Y Y, Chang H C, Kabatek M, Song Y Y, Wang Z H, Jantz M, Schneider W, Wu M Z, Montoya E, Kardasz B, Heinrich B, te Velthuis S G E, Schultheiss H and Hoffmann A 2013 Phys. Rev. Lett. 111 106601
[32] Kittel C 1948 Phys. Rev. 73 155
[33] Jiang S W, Liu S, Wang P, Luan Z Z, Tao X D, Ding H F and Wu D 2015 Phys. Rev. Lett. 115 086601
[34] Rao J W, Fan X L, Ma L, Zhou H G, Zhao X B, Zhao J, Zhang F Z, Zhou S M and Xue D S 2015 J. Appl. Phys. 117 17C725
[35] Carbone C, Vescovo E, Rader O, Gudat W and Eberhardt W 1993 Phys. Rev. Lett. 71 2805
[36] Garrison K, Chang Y and Johnson P D 1993 Phys. Rev. Lett. 71 2801
[37] Pizzini S, Fontaine A, Giorgetti C and Dartyge E 1995 Phys. Rev. Lett. 74 1470
[38] Hirai K 2004 Physica B 345 209
[39] Jiao H and Bauer G E W 2013 Phys. Rev. Lett. 110 217602
[40] Carver K R and Mink J W 1981 IEEE Trans. Anten. Propag. AP-29 2
[41] Lin T, Tang C, Alyahayaei A M and Shi J 2014 Phys. Rev. Lett. 113 037203
[42] Sandweg C W, Kajiwara Y, Ando K, Saitoh E and Hillebrands B 2010 Appl. Phys. Lett. 97 252504
[43] Du C H, Wang H L, Pu Y, Meyer T L, Woodward P M, Yang F Y and Hammel P C 2013 Phys. Rev. Lett. 111 247202
[44] Wang H L, Du C H, Hammel P C and Yang F Y 2014 Phys. Rev. Lett. 113 097202
[45] Chumak A V, Serga A A, Jungfleisch M B, Neb R, Bozhko D A, Tiberkevich V S and Hillebrands B 2012 Appl. Phys. Lett. 100 082405
[46] Sandweg C W, Kajiwara Y, Chumak A V, Serga A A, Vasyuchka V I, Jungfleisch M B, Saitoh E and Hillebrands B 2011 Phys. Rev. Lett. 106 216601
[47] Collet M, de Milly X, d'Allivy Kelly O, Naletov V V, Bernard R, Bortolotti P, Ben Youssef J, Demidov V E, Demokritov S O, Prieto J L, M. Muñoz, Cros V, Anane A, de Loubens G and Klein O 2016 Nat. Commun. 7 10377
[1] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[2] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[3] Spin current transmission in Co1-xTbx films
Li Wang(王力), Yangtao Su(苏仰涛), Yang Meng(孟洋), Haibin Shi(石海滨), Xinyu Cao(曹昕宇), and Hongwu Zhao(赵宏武). Chin. Phys. B, 2022, 31(2): 027504.
[4] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[5] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[6] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[7] Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures
Danliang Zhang(张丹亮), Chen Yi(易琛), Cuihuan Ge(葛翠环), Weining Shu(舒维宁), Bo Li(黎博), Xidong Duan(段曦东), Anlian Pan(潘安练), and Xiao Wang(王笑). Chin. Phys. B, 2021, 30(9): 097601.
[8] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
[9] Pure spin-current diode based on interacting quantum dot tunneling junction
Zhengzhong Zhang(张正中), Min Yu(余敏), Rui Bo(薄锐), Chao Wang(王超), and Hao Liu(刘昊). Chin. Phys. B, 2021, 30(11): 117305.
[10] Detection of spin current through a quantum dot with Majorana bound states
Ning Wang(王宁), Xingtao An(安兴涛), and Shuhui Lv(吕树慧). Chin. Phys. B, 2021, 30(10): 100302.
[11] Dynamical anisotropic magnetoelectric effects at ferroelectric/ferromagnetic insulator interfaces
Yaojin Li(李耀进), Vladimir Koval, Chenglong Jia(贾成龙). Chin. Phys. B, 2019, 28(9): 097501.
[12] Magnetization-direction-dependent inverse spin Hall effect observed in IrMn/NiFe/Cu/YIG multilayer structure
Runrun Hao(郝润润), Ruxue Zang(臧如雪), Tie Zhou(周铁), Shishou Kang(康仕寿), Shishen Yan(颜世申), Guolei Liu(刘国磊), Guangbing Han(韩广兵), Shuyun Yu(于淑云), Liangmo Mei(梅良模). Chin. Phys. B, 2019, 28(3): 037202.
[13] A review of current research on spin currents and spin-orbit torques
Xiao-Yu Feng(冯晓玉), Qi-Han Zhang(张琪涵), Han-Wen Zhang(张瀚文), Yi Zhang(张祎), Rui Zhong(钟瑞), Bo-Wen Lu(卢博文), Jiang-Wei Cao(曹江伟), Xiao-Long Fan(范小龙). Chin. Phys. B, 2019, 28(10): 107105.
[14] Inverse spin Hall effect in ITO/YIG exited by spin pumping and spin Seebeck experiments
Kejian Zhu(朱科建), Weijian Lin(林伟坚), Yangtao Su(苏仰涛), Haibin Shi(石海滨), Yang Meng(孟洋), Hongwu Zhao(赵宏武). Chin. Phys. B, 2019, 28(1): 017201.
[15] Growth and transport properties of topological insulator Bi2Se3 thin film on a ferromagnetic insulating substrate
Shanna Zhu(朱珊娜), Gang Shi(史刚), Peng Zhao(赵鹏), Dechao Meng(孟德超), Genhao Liang(梁根豪), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林), Yongqing Li(李永庆), Lan Chen(陈岚), Kehui Wu(吴克辉). Chin. Phys. B, 2018, 27(7): 076801.
No Suggested Reading articles found!