Special Issue:
TOPICAL REVIEW — Low-dimensional nanostructures and devices
|
TOPICAL REVIEW—Low-dimensional nanostructures and devices |
Prev
Next
|
|
|
Proximity effects in topological insulator heterostructures |
Li Xiao-Guang (李晓光)a b, Zhang Gu-Feng (张谷丰)b, Wu Guang-Fen (武光芬)a, Chen Hua (陈铧)c, Dimitrie Culcerbd, Zhang Zhen-Yu(张振宇)b |
a Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
b International Center for Quantum Design of Functional Materials (ICQD)/Hefei National Laboratory for Physical Sciences at the Microscale (HFNL), University of Science and Technology of China, Hefei 230026, China;
c Department of Physics, University of Texas at Austin, Austin, Texas 78712, USA;
d School of Physics, The University of New South Wales, Sydney 2052, Australia |
|
|
Abstract Topological insulators (TIs) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to TI-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insulator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topological helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath. These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TIbased heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications.
|
Received: 16 August 2013
Accepted manuscript online:
|
PACS:
|
73.22.Pr
|
(Electronic structure of graphene)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91021019, 51074151, and 11034006), the National Basic Research Program of China (Grant Nos. 2010CB923401 and 2011CB921801), USDOE (Grant No. DE-FG03-02ER45958), US National Science Foundation (Grant No. 0906025), and the BES Program of US Department of Energy (Grant No. ER45958). |
Corresponding Authors:
Zhang Zhen-Yu
E-mail: zhangzy@ustc.edu.cn
|
Cite this article:
Li Xiao-Guang (李晓光), Zhang Gu-Feng (张谷丰), Wu Guang-Fen (武光芬), Chen Hua (陈铧), Dimitrie Culcer, Zhang Zhen-Yu(张振宇) Proximity effects in topological insulator heterostructures 2013 Chin. Phys. B 22 097306
|
[1] |
Thouless D J, Kohmoto M, NightingaleMP and den NijsM1982 Phys. Rev. Lett. 49 405
|
[2] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[3] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[4] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
|
[5] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
|
[6] |
Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
|
[7] |
König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
|
[8] |
Kong D and Cui Y 2011 Nat. Chem. 3 845
|
[9] |
Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
|
[10] |
Stanescu T D, Sau J D, Lutchyn R M and Das S S 2010 Phys. Rev. B 81 241310
|
[11] |
Mahfouzi F, Nikoli′c B K, Chen S H and Chang C R 2010 Phys. Rev. B 82 195440
|
[12] |
Garate I and Franz M 2010 Phys. Rev. Lett. 104 146802
|
[13] |
Chang J, Jadaun P, Register L F, Banerjee S K and Sahu B 2011 Phys. Rev. B 84 155105
|
[14] |
Hutasoit J A and Stanescu T D 2011 Phys. Rev. B 84 085103
|
[15] |
Hirahara T, Bihlmayer G, Sakamoto Y, Yamada M, Miyazaki H, Kimura S I, Blügel S and Hasegawa S 2011 Phys. Rev. Lett. 107 166801
|
[16] |
Chen H, ZhuW, Xiao D and Zhang Z 2011 Phys. Rev. Lett. 107 056804
|
[17] |
Cook A and Franz M 2011 Phys. Rev. B 84 201105
|
[18] |
Zhang Q, Zhang Z, Zhu Z, Schwingenschlögl U and Cui Y 2012 ACS Nano 6 2345
|
[19] |
Nakayama K, Eto K, Tanaka Y, Sato T, Souma S, Takahashi T, Segawa K and Ando Y 2012 Phys. Rev. Lett. 109 236804
|
[20] |
Shevtsov O, Carmier P, Petitjean C, Groth C, Carpentier D andWaintal X 2012 Phys. Rev. X 2 031004
|
[21] |
Culcer D 2012 Physica E 44 860
|
[22] |
Qu F, Yang F, Shen J, Ding Y, Chen J, Ji Z, Liu G, Fan J, Jing X, Yang C and Lu L 2012 Sci. Rep. 2
|
[23] |
Zhang G, Li X, Wu G, Wang J, Culcer D, Kaxiras E and Zhang Z 2012 ArXiv:1212.1343
|
[24] |
Eremeev S V, Men’shov V N, Tugushev V V, Echenique P M and Chulkov E V 2013 ArXiv:1304.1275
|
[25] |
Ueda S, Kawakami N and Sigrist M 2013 Phys. Rev. B 87 161108
|
[26] |
Luo W and Qi X L 2013 Phys. Rev. B 87 085431
|
[27] |
Wu G, Chen H, Sun Y, Li X, Cui P, Franchini C, Wang J, Chen X Q and Zhang Z 2013 Sci. Rep. 3
|
[28] |
Björnson K and Black-Schaffer A M 2013 Phys. Rev. B 88 024501
|
[29] |
Nayak C, Simon S H, Stern A, Freedman M and Das S S 2008 Rev. Mod. Phys. 80 1083
|
[30] |
Qi X L, Li R, Zang J and Zhang S C 2009 Science 323 1184
|
[31] |
Zhang W, Yu R, Zhang H J, Dai X and Fang Z 2010 New J. Phys. 12 065013
|
[32] |
Eremeev S V, Landolt G, Menshchikova T V, Slomski B, Koroteev Y M, Aliev Z S, Babanly M B, Henk J, Ernst A, Patthey L, Eich A, Khajetoorians A A, Hagemeister J, Pietzsch O, Wiebe J, Wiesendanger R, Echenique P M, Tsirkin S S, Amiraslanov I R, Dil J H and Chulkov E V 2012 Nat. Commun. 3 635
|
[33] |
Black-Schaffer A M and Balatsky A V 2012 Phys. Rev. B 85 121103
|
[34] |
Xu S Y, Xia Y, Wray L A, Jia S, Meier F, Dil J H, Osterwalder J, Slomski B, Bansil A, Lin H, Cava R J and Hasan M Z 2011 Science 332 560
|
[35] |
Weeks C, Hu J, Alicea J, Franz M and Wu R 2011 Phys. Rev. X 1 021001
|
[36] |
Chadov S, Qi X K, KÃbler J, Fecher G H, Felser C and Zhang S C 2010 Nat. Mater. 9 541
|
[37] |
Xiao D, Yao Y, Feng W, Wen J, Zhu W, Chen X Q, Stocks G M and Zhang Z 2010 Phys. Rev. Lett. 105 096404
|
[38] |
Lin H, Wray L A, Xia Y, Xu S, Jia S, Cava R J, Bansil A and Hasan M Z 2010 Nat. Mater. 9 546
|
[39] |
Kim M, Kim C H, Kim H S and Ihm J 2012 Proc. Natl. Acad. Sci. 109 671
|
[40] |
Qi X L and Zhang S C 2010 Phys. Today 63 33
|
[41] |
Lenz K, Zander S and Kuch W 2007 Phys. Rev. Lett. 98 237201
|
[42] |
Helmes RW, Costi T A and Rosch A 2008 Phys. Rev. Lett. 101 066802
|
[43] |
Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401
|
[44] |
Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[45] |
Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
|
[46] |
Hsieh D, Qian D, Wray L, Xia Y, Hor Y S, Cava R J and Hasan M Z 2008 Nature 452 970
|
[47] |
Zhang T, Cheng P, Chen X, Jia J F, Ma X, He K, Wang L, Zhang H, Dai X, Fang Z, Xie X C and Xue Q K 2009 Phys. Rev. Lett.103 266803
|
[48] |
Hsieh D, Xia Y, Qian D, Wray L, Dil J H, Meier F, Osterwalder J, Patthey L, Checkelsky J G, Ong N P, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nature 460 1101
|
[49] |
Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
|
[50] |
Zhang Y, He K, Chang C Z, Song C L,Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C and Xue Q K 2010 Nat. Phys. 6 584
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|