Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017301    DOI: 10.1088/1674-1056/ac728c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of preparation parameters on growth and properties of β-Ga2O3 film

Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺)
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  The Ga$_{2}$O$_{3}$ films are deposited on the Si and quartz substrates by magnetron sputtering, and annealing. The effects of preparation parameters (such as argon-oxygen flow ratio, sputtering power, sputtering time and annealing temperature) on the growth and properties ($e.g.$, surface morphology, crystal structure, optical and electrical properties of the films) are studied by x-ray diffractometer (XRD), scanning electron microscope (SEM), and ultraviolet-visible spectrophotometer (UV-Vis). The results show that the thickness, crystallization quality and surface roughness of the $\beta $-Ga$_{2}$O$_{3}$ film are influenced by those parameters. All $\beta $-Ga$_{2}$O$_{3 }$films show good optical properties. Moreover, the value of bandgap increases with the enlarge of the percentage of oxygen increasing, and decreases with the increase of sputtering power and annealing temperature, indicating that the bandgap is related to the quality of the film and affected by the number of oxygen vacancy defects. The $I$-$V$ curves show that the Ohmic behavior between metal and $\beta $-Ga$_{2}$O$_{3}$ films is obtained at 900 ${^\circ}$C. Those results will be helpful for the further research of $\beta $-Ga$_{2}$O$_{3}$ photoelectric semiconductor.
Keywords:  β-Ga2O3      magnetron sputtering      growth parameters      optical and electrical properties  
Received:  13 February 2022      Revised:  23 May 2022      Accepted manuscript online:  24 May 2022
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  81.15.Cd (Deposition by sputtering)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the Science and Technology Major Project of Shanxi Province, China (Grant No. 20181102013), the "1331 Project" Engineering Research Center of Shanxi Province, China (Grant No. PT201801), and the Natural Science Foundation of Shanxi Province, China (Grant No. 201801D221131).
Corresponding Authors:  Yong-Sheng Wang     E-mail:  wangyongsheng@tyut.edu.cn

Cite this article: 

Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺) Effects of preparation parameters on growth and properties of β-Ga2O3 film 2023 Chin. Phys. B 32 017301

[1] Tian A Q, Hu L, Zhang L Q, Liu J P and Yang H 2020 Sci. China-Mater. 63 1348
[2] Chen D Z, Yuan P, Zhao S L, Liu S, Xin Q, Song X F, Yan S Q, Zhang Y C, Xi H, Zhu W D, Zhang W H, Zhang J Q, Zhou H, Zhang C F, Zhang J C and Hao Y 2022 Sci. China-Mater. 65 795
[3] Huang J, Guo L W, Lu W, Zhang Y H, Shi Z, Jia Y P, Li Z L, Yang J W, Chen H X, Mei Z X and Chen X L 2016 Chin. Phys. B 25 067205
[4] Higashiwaki M, Sasaki K, Kuramata A, Masui T and Yamakoshi S 2012 Appl. Phys. Lett. 100 013504
[5] Higashiwaki M, Sasaki K, Murakami H, Kumagai Y, Koukitu A, Kuramata A, Masui T and Yamakoshi S 2016 Semicond. Sci. Technol. 31 034001
[6] Wellenius P, Suresh A, Foreman J V, Everitt H O and Muth J F 2008 Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 146 252
[7] Zhang L C, Zhao F Z, Wang F F and Li Q S 2013 Chin. Phys. B 22 128502
[8] Liu Z F, Yamazaki T, Shen Y B, Kikuta T, Nakatani N and Li Y X 2008 Sens. Actuators B-Chem. 129 666
[9] Jin C, Park S, Kim H and Lee C 2012 Sens. Actuators B-Chem. 161 223
[10] Kim H, Jin C, An S and Lee C 2012 Ceram. Int. 38 3563
[11] Yang C, Liang H W, Zhang Z Z, Xia X C, Zhang H Q, Shen R S, Luo Y M and Du G T 2019 Chin. Phys. B 28 048502
[12] Arora K, Goel N, Kumar M and Kumar M 2018 Acs Photon. 5 2391
[13] Wang X, Gu W F, Qiao Y F, Feng Z Y, An Y H, Zhang S H and Liu Z 2021 Chin. Phys. B 30 114211
[14] Ma J, Lee O and Yoo G 2019 IEEE J. Electron Dev. Soc. 7 512
[15] Ma X F, Huang Y Q, Zhi Y S, Wang X, Li P G, Wu Z P and Tang W H 2019 Chin. Phys. B 28 088503
[16] Guo L L, Zhang Y M, Luan S Z, Qiao R D and Jia R X 2022 Chin. Phys. B 31 017304
[17] Rao C, Fei Z Y, Chen W Q, Chen Z M, Lu X, Wang G, Wang X Z, Liang J and Pei Y L 2020 Chin. Phys. B 29 097303
[18] Dong L P, Jia R X. Li C, Xin B and Zhang Y M 2017 J. Alloys Compd. 712 379
[19] Sasaki K, Higashiwaki M, Kuramata A, Masui T and Yamakoshi S 2013 IEEE Electron Device Lett. 34 493
[20] Shimbori A, Wong H Y and Huang A Q 2020 Proceedings of the 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), September 13-18, 2020, Vienna Austria, p. 218
[21] Oh S, Kim C K and Kim J 2018 Acs Photon. 5 1123
[22] Zhang T T, Lin J, Zhang X H, Huang Y, Xu X W, Xue Y M, Zou J and Tang C C 2013 J. Lumines. 140 30
[23] Green A J, Chabak K D, Heller E R, Fitch R C, Baldini M, Fiedler A, Irmscher K, Wagner G, Galazka Z, Tetlak S E, Crespo A, Leedy K and Jessen G H 2016 IEEE Electron Dev. Lett. 37 902
[24] Chen X H, Han S, Lu Y M, Cao P J, Liu W J, Zeng Y X, Jia F, Xu W Y, Liu X K and Zhu D L 2018 J. Alloys Compd. 747 869
[25] Chen Y P, Liang H W, Xia X C, Shen R S, Liu Y, Luo Y M and Du G T 2015 Appl. Surf. Sci. 325 258
[26] Shih H Y, Chu F C, Das A, Lee C Y, Chen M J and Lin R M 2016 Nanoscale Res. Lett. 11 235
[27] Liao Y K, Jiao S J, Li S F, Wang J Z, Wang D B, Gao S Y, Yu Q J and Li H T 2018 Crystengcomm 20 133
[28] Ma H L and Fan D W 2009 Chin. Phys. Lett. 26 117302
[29] Dong L P, Jia R X, Xin B and Zhang Y M 2016 J. Vac. Sci. Technol. A 34 060602
[30] Wang J, Ye L J, Wang X, Zhang H, Li L, Kong C Y and Li W J 2019 J. Alloys Compd. 803 9
[31] Zhi Y S, Jiang W Y, Liu Z, Liu Y Y, Chu X L, Liu J H, Li S, Yan Z Y, Wang Y H, Li P G, Wu Z P and Tang W H 2021 Chin. Phys. B 30 057301
[32] Holzwarth U and Gibson N 2011 Nat. Nanotechnol. 6 534
[33] Liu X Z, Guo P, Sheng T, Qian L X, Zhang W L and Li Y R 2016 Opt. Mater. 51 203
[34] Li S F, Jiao S J, Wang D B, Gao S Y and Wang J Z 2018 J. Alloys Compd. 753 186
[35] Lu Y M, Li C, Chen X H, Han S, Cao P J, Jia F, Zeng Y X, Liu X K, Xu W Y, Liu W J and Zhu D L 2019 Chin. Phys. B 28 018504
[36] Nishinaka H, Tahara D, Morimoto S and Yoshimoto M 2017 Mater. Lett. 205 28
[37] Wang Y H, Li H R, Cao J, Shen J Y, Zhang Q Y, Yang Y T, Dong Z G, Zhou T H, Zhang Y, Tang W H and Wu Z P 2021 ACS Nano 15 16654
[38] Mohamed M, Irmscher K, Janowitz C, Galazka Z, Manzke R and Fornari R 2012 Appl. Phys. Lett. 101 132106
[39] Lee M H and Peterson R L 2021 J. Mater. Res. 36 4771
[40] Lovejoy T C, Chen R Y, Zheng X, Villora E G, Shimamura K, Yoshikawa H, Yamashita H, Ueda S, Kobayashi K, Dunham S T, Ohuchi F S and Olmstead M A 2012 Appl. Phys. Lett. 100 181602
[1] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[2] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[3] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[4] Effects of post-annealing on crystalline and transport properties of Bi2Te3 thin films
Qi-Xun Guo(郭奇勋), Zhong-Xu Ren(任中旭), Yi-Ya Huang(黄意雅), Zhi-Chao Zheng(郑志超), Xue-Min Wang(王学敏), Wei He(何为), Zhen-Dong Zhu(朱振东), and Jiao Teng(滕蛟). Chin. Phys. B, 2021, 30(6): 067307.
[5] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[6] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[7] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[8] CdS/Si nanofilm heterojunctions based on amorphous silicon films: Fabrication, structures, and electrical properties
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), Hong-Chun Huang(黄宏春), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(2): 026101.
[9] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[10] Band offsets and electronic properties of the Ga2O3/FTO heterojunction via transfer of free-standing Ga2O3 onto FTO/glass
Xia Wang(王霞), Wei-Fang Gu(古卫芳), Yong-Feng Qiao(乔永凤), Zhi-Yong Feng(冯志永), Yue-Hua An(安跃华), Shao-Hui Zhang(张少辉), and Zeng Liu(刘增). Chin. Phys. B, 2021, 30(11): 114211.
[11] Influence of CdS films synthesized by different methods on the photovoltaic performance of CdTe/CdS thin film solar cells
Jun Wang(汪俊), Yuquan Wang(王玉全), Cong Liu(刘聪), Meiling Sun(孙美玲), Cao Wang(王操), Guangchao Yin(尹广超), Fuchao Jia(贾福超), Yannan Mu(牟艳男), Xiaolin Liu(刘笑林), Haibin Yang(杨海滨). Chin. Phys. B, 2020, 29(9): 098802.
[12] A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates
Yuhong Wang(王玉红), Mingli Wang(王明利), Lin Shen(沈琳), Yanying Zhu(朱艳英), Xin Sun(孙鑫), Guochao Shi(史国超), Xiaona Xu(许晓娜), Ruifeng Li(李瑞峰), Wanli Ma(马万里). Chin. Phys. B, 2018, 27(1): 017801.
[13] Effect of substrate temperature on the morphological, structural, and optical properties of RF sputtered Ge1-xSnx films on Si substrate
H Mahmodi, M R Hashim. Chin. Phys. B, 2017, 26(5): 056801.
[14] Low-temperature phase transformation of CZTS thin films
Wei Zhao(赵蔚), Lin-Yuan Du(杜霖元), Lin-Lin Liu(刘林林), Ya-Li Sun(孙亚利), Zhi-Wei Liu(柳志伟), Xiao-Yun Teng(滕晓云), Juan Xie(谢娟), Kuang Liu(刘匡), Wei Yu(于威), Guang-Sheng Fu(傅广生), Chao Gao(高超). Chin. Phys. B, 2017, 26(4): 046402.
[15] Field emission properties of a-C and a-C:H films deposited on silicon surfaces modified with nickel nanoparticles
Jin-Long Jiang(姜金龙), Yu-Bao Wang(王玉宝), Qiong Wang(王琼), Hao Huang(黄浩), Zhi-Qiang Wei(魏智强), Jun-Ying Hao(郝俊英). Chin. Phys. B, 2016, 25(4): 048101.
No Suggested Reading articles found!