CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates |
Yuhong Wang(王玉红)1, Mingli Wang(王明利)1, Lin Shen(沈琳)2, Yanying Zhu(朱艳英)1, Xin Sun(孙鑫)1, Guochao Shi(史国超)1, Xiaona Xu(许晓娜)1, Ruifeng Li(李瑞峰)1, Wanli Ma(马万里)3 |
1 Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China; 2 Liren College of Yanshan University, Qinhuangdao 066004, China; 3 Department of Mathematics, NC State University, Raleigh 276968205, USA |
|
|
Abstract Noble metal nanorough surfaces that support strong surface-enhanced Raman scattering (SERS) is widely applied in the practical detection of organic molecules. A low-cost, large-area, and environment-friendly SERS-active substrate was acquired by sputtering inexpensive copper (Cu) on natural dragonfly wing (DW) with an easily controlled way of magnetron sputtering. By controlling the sputtering time of the fabrication of Cu on the DW, the performance of the SERS substrates was greatly improved. The SERS-active substrates, obtained at the optimal sputtering time (50 min), showed a low detection limit (10-6M) to 4-aminothiophenol (4-ATP), a high average enhancement factor (EF, 1.98×104), excellent signal uniformity, and good reproducibility. In addition, the results of the 3D finite-difference time-domain (3D-FDTD) simulation illustrated that the SERS-active substrates provided high-density “hot spots”, leading to a large SERS enhancement.
|
Received: 21 May 2017
Revised: 24 September 2017
Accepted manuscript online:
|
PACS:
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
74.25.nd
|
(Raman and optical spectroscopy)
|
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
Fund: Project supported by the Youth Fund Project of University Science and Technology Plan of Hebei Provincial Department of Education, China (Grant No. QN2015004) and the Doctoral Fund of Yanshan University, China (Grant No. B924). |
Corresponding Authors:
Mingli Wang
E-mail: wml@ysu.edu.cn
|
Cite this article:
Yuhong Wang(王玉红), Mingli Wang(王明利), Lin Shen(沈琳), Yanying Zhu(朱艳英), Xin Sun(孙鑫), Guochao Shi(史国超), Xiaona Xu(许晓娜), Ruifeng Li(李瑞峰), Wanli Ma(马万里) A general method for large-scale fabrication of Cu nanoislands/dragonfly wing SERS flexible substrates 2018 Chin. Phys. B 27 017801
|
[1] |
Lv M Y, Teng H Y, Chen Z Y, Zhao Y M, Zhang X, Liu L, Wu Z L, Liu L M and Xu H J 2015 Sens. Actuators B Chem. 209 820
|
[2] |
Hao J, Han M J, Han S, Meng X, Su T L and Wang Q K 2015 Environ. Sci. 36 152
|
[3] |
Dasary S S, Zones Y K, Barnes S L, Ray P C and Sing A K 2016 Sens. Actuators B Chem. 224 65
|
[4] |
Lei O Y, Hu Y W, Zhu L H, Gary J C and Joseph I 2017 Biosens. Bioelectron. 92 755
|
[5] |
Liu J, Zhou J, Tang B, Zeng T, Li Y L, Li J L, Ye Y and Wang X G 2016 Appl. Surf. Sci. 386 296
|
[6] |
Fang H, Yin H J, Lv M Y, Xu H J, Zhao Y M, Zhang X, Wu Z L, Liu L and Tan T W 2015 Biosens. Bioelectron. 69 71
|
[7] |
Liu Y, Zhou H, Hu Z, Yu G, Yang D and Zhao J 2017 Biosens. Bioelec-tron. 94 131
|
[8] |
Qu L L, Liu Y Y and He S H 2015 Biosens. Bioelectron. 77 292
|
[9] |
Tan Y Y, Yan B, Xue L L, Li Y, Luo X Y and Ji P 2017 Lipids Health Dis. 16 73
|
[10] |
Polly L, Francois X N, Fanbin K, Azlin M and Mengshi L 2017 Car-bohydr. Polym. 157 643
|
[11] |
Li R P, Yang G H, Yang J L, Han J H, Liu J H and Huang M J 2016 Food Control 68 14
|
[12] |
He S, Xie W, Zhang W, Zhang L, Wang Y, Liu X, Liu Y and Du C 2015 Spectrochim. Acta Part A 137 1092
|
[13] |
Rajapandiyan P, Tang W L and Yang J 2015 Food Control 56 155
|
[14] |
Fang H, Zhang X, Zhang S J, Liu L, Zhao Y M and Xu H J 2015 Sens. Actuators B Chem. 213 452
|
[15] |
Qi M, Huang X, Zhou Y, Zhang L, Jin Y, Peng Y, Jiang H and Du S 2016 Food Chem. 197 723
|
[16] |
Samir K, Pratibha G and Jitendra P S 2017 Sens. Actuators B. Chem. 241 577
|
[17] |
Shao F, Lu Z C, Liu C, Han H Y, Chen K, Li W T, He Q G, Peng H and Chen J N 2014 Acs. Appl. Mater. Interfaces 6 6281
|
[18] |
Ward D R, Grady N K, Levin C S, Halas N J, Wu Y, Nordlander P and Natelson D 2007 Nano Lett. 7 1396
|
[19] |
Sharma B, Frontiera R R, Henry A I, Ring E and van Duyne R P 2012 Mater. Today 15 16
|
[20] |
Kudelskia A, Bukowskaa J, Janik-Czachorb M, Grochalaa W, Szummerc A and Dolatab M 1998 Vib. Spectrosc 16 21
|
[21] |
Jiji S G and Gopchandran K G 2017 Spectrochim. Acta Part A 171 499
|
[22] |
Kudelski A and Bukowska J 1996 Vib. Spectrosc. 10 335
|
[23] |
Wang J, Sun C S, Liu X F, Xin L L and Fang Y 2014 Colloids Surf. A 455 104
|
[24] |
Dinish U S, Yaw F C, Agarwal A and Olivo M 2011 Biosens. Bioelec-tron. 26 1987
|
[25] |
Wang M L, Zhang C X, Wu Z L, Jing X L and Xu H J 2014 Chin. Phys. B 23 547
|
[26] |
Sharma H, Agarwal D C, Shukla A K, Avasthi D K and Vankar V D 2013 Raman Spectrosc. 44 12
|
[27] |
Oh Y J and Jeong K H 2012 Adv. Mater. 24 2234
|
[28] |
Guo L, Zhang C X, Deng L, Zhang G X and Xu H J 2014 Appl. Phys. 115 213101
|
[29] |
Rajabi H and Darvizeh A 2013 Chin. Phys. B 22 738
|
[30] |
Chen Y and Fang Y 2008 Spectrochim. Acta Part A 69 733
|
[31] |
Lan M M, Li H Q, Wang D, Li Y and Xu G Y 2014 Vacuum 110 87
|
[32] |
Wang X B, Song C, Geng K W, Zeng F and Pan F 2007 Appl. Surf. Sci. 253 6905
|
[33] |
Voevodin A A, Rebholz C, Schneider J M, Stevenson P and Matthews A 1995 Surf. Coat. Technol. 73 185
|
[34] |
Sharma H S S, Carmichael E and Call D M 2016 Vib. Spectrosc. 83 159
|
[35] |
Li H, Jiang J, Wang Z, Wang X, Liu X, Yan Y and Li C 2017 Colloid Interface Sci. 501 86
|
[36] |
Hao Z, Mansuer M, Guo Y, Zhu Z and Wang X 2016 Talanta 146 533
|
[37] |
Wang Y L, Chen H J, Dong S J and Wang E K 2006 Chem. Phys. 124 163
|
[38] |
Tsai Y C, Hsu P C, Liu Y W and Wu T M 2009 Sens. Actuators B Chem. 138 5
|
[39] |
Wei G, Wang L, Liu Z G, Song Y H, Sun L L, Yang T and Li Z 2005 Phys. Chem. B 109 23941
|
[40] |
Hong G S, Li C and Qi L M 2010 Adv. Funct. Mater. 20 3774
|
[41] |
De A F, Gentile F and Mecarini F 2011 Nat. Photon. 5 682
|
[42] |
Yang J L, Li R P, Han J H and Huang M J 2016 Chin. Phys. B 25 083301
|
[43] |
García-Vidal F J and Pendry J B 1996 Phys. Rev. Lett. 77 1163
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|