Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017504    DOI: 10.1088/1674-1056/ac8f39
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7

Tina Raoufi1,2, Jincheng He(何金城)1,2, Binbin Wang(王彬彬)1,2, Enke Liu(刘恩克)1,2, and Young Sun(孙阳)1,3,†
1 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
Abstract  We present a study on the magnetocaloric properties of a CaBaCo$_{4}$O$_{7}$ polycrystalline cobaltite along with research on the nature of magnetic phase transition. The magnetization as a function of temperature identifies the ferrimagnetic to paramagnetic transition at a Curie temperature of 60 K. Moreover, a Griffiths-like phase is confirmed in a temperature range above $T_{\rm C}$. The compound undergoes a crossover from the first to second-order ferrimagnetic transformation, as evidenced by the Arrott plots, scaling of the universal entropy curve, and field-dependent magnetic entropy change. The maximum of entropy change is 3 J/kg$\cdot$K for $\Delta H = 7$ T at ${T}_{\rm C}$, and a broadening of the entropy peak with increasing magnetic field indicates a field-induced transition above $T_{\rm C}$. The analysis of the magnetic entropy change using the Landau theory reveals the second-order phase transition and indicates that the magnetocaloric properties of CaBaCo$_{4}$O$_{7}$ are dominated by the magnetoelastic coupling and electron interaction. The corresponding values of refrigerant capacity and relative cooling power are estimated to be 33 J/kg and 42 J/kg, respectively.
Keywords:  magnetocaloric effect      cobaltite      phase transition      Griffiths phase  
Received:  25 July 2022      Revised:  29 August 2022      Accepted manuscript online:  05 September 2022
PACS:  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
  75.50.-y (Studies of specific magnetic materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51725104) and Beijing Natural Science Foundation (Grant No. Z180009).
Corresponding Authors:  Young Sun     E-mail:  youngsun@cqu.edu.cn

Cite this article: 

Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳) Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7 2023 Chin. Phys. B 32 017504

[1] Omote H, Watanabe S, Matsumoto K, Gilmutdinov I, Kiiamov A and Tayurskii D 2019 Cryogenics 101 58
[2] Zhang H, Gimaev R, Kovalev B, Kamilov K, Zverev V and Tishin A 2019 Physica B 558 65
[3] Pakhira S, Mazumdar C, Ranganathan R, et al. 2017 Sci. Rep. 7 7367
[4] Zhang Y 2019 J. Alloys Compd. 787 1173
[5] Taboada-Moreno C A, Sánchez-De Jesús F, Pedro-Garcí a F, Cortés-Escobedo C A, Betancourt-Cantera J A, Ramírez-Cardona M and BolarínMiró A M 2020 J. Magn. Magn. Mater. 496 165887
[6] Franco V, Blázquez J S, Ipus J J, Law J Y, Moreno-Ramírez L M and Conde A 2018 Prog. Mater. Sci. 93 112
[7] Li L, Yan M 2020 J. Alloys Compd. 823 153810
[8] Gottschall T, Skokov K P, Fries M, Taubel A, Radulov I, Scheibel F, Benke D, Riegg S and Gutfleisch O 2019 Adv. Energy Mater. 9 1901322
[9] Bordács S, Kocsis V, Tokunaga Y, Nagel U, Rõ om T, Takahashi Y, Taguchi Y and Tokura Y 2015 Phys. Rev. B 92 214441
[10] Dey K, Indra A, Chatterjee A, Majumdar S, Rütt U, Gutowski O, Zimmermann M V and Giri S 2017 Phys. Rev. B 96 184428
[11] Chai Y S, Cong J Z, He J C, Su D, Ding X X, Singleton J, Zapf V and Sun Y 2021 Phys. Rev. B 103 174433
[12] Qu Z, Ling L, Zhang L, Pi L and Zhang Y 2011 Solid State Commun. 151 917
[13] Seikh M M, Kundu A K, Caignaert V and Raveau B 2016 J. Alloys Compd. 656 166
[14] Hussain S and Maqsood A 2007 J. Magn. Magn. Mater. 316 73
[15] Paul-Boncour V and Bessais L 2021 Magnetochemistry 7 13
[16] Dhanasekhar C, Das A and Venimadhav A 2016 J. Magn. Magn. Mater. 418 76
[17] Caignaert V, Pralong V, Maignan A and Raveau B 2009 Solid State Commun. 149 453
[18] Ghorai S, Ivanov S A, Skini R and Svedlindh P 2021 J. Phys.: Condens. Matter 33 145801
[19] Anderson P W and Hasegawa H 1955 Phys. Rev. 100 675
[20] Fita I, Troyanchuk I O, Zajarniuk T, Iwanowski P, Wisniewski A and Puzniak R 2018 Phys. Rev. B 98 214445
[21] Caignaert V, Pralong V, Hardy V, Ritter C and Raveau B 2010 Phys. Rev. B 81 094417
[22] Banerjee B 1964 Phys. Lett. 12 16
[23] Kumar P, Singh N K, Suresh K G and Nigam A K 2008 Phys. Rev. B 77 184411
[24] Morozkin A V, Garshev A V, Yapaskurt V O, Yao J, Nirmala R, Quezado S and Malik S K 2018 J. Solid State Chem. 260 95
[25] Shen J, Li Y X and Sun J R 2009 J. Alloys Compd . 476 693
[26] Zhang Z, Stein S, Li L and Poettgen R 2019 Intermetallics 109 24
[27] Stein S, Heletta L, Block T and Pöttgen R 2018 Z. Naturforsch. B 73 987
[28] Aliuzzaman M, Haque M M, Ferdous M J, Hoque S M and Hakim M A 2014 World J. Condens. Matter Phys. 4 13
[29] Ajmal M, Shah N A, Maqsood A, Awan M S and Arif M 2010 J. Alloys Compd. 508 226
[30] Amaral J S, Reis M S, Amaral V S, Mendonca T M, Araujo J P, Sa M A, Tavares P B and Vieira J M 2005 J. Magn. Magn. Mater. 290 686
[31] Nasri M, Cherif A and Dhahri E 2019 J. Low Temp. Phys. 196 386
[32] Inoue J and Shimizu M 1982 J. Phys. F: Met. Phys. 12 1811
[33] Johnson R D, Cao K, Giustino F and Radaelli P G 2014 Phys. Rev. B 90 045129
[34] Singh K, Caignaert V, Chapon L C, Pralong V, Raveau B and Maignan A 2012 Phys. Rev. B 86 024410
[35] Law J Y, Franco V, Moreno-Ramírez L M, Conde A, Karpenkov D Y, Radulov I, Skokov K P and Gutfleisch O 2018 Nat. Commun. 9 1
[36] Bonilla C M, Bartolomé F, García L M, Parra-Borderías M, HerreroAlbillos J and Franco V 2010 J. Appl. Phys. 107 09E131
[37] Franco V, Blázquez J S and Conde A 2006 Appl. Phys. Lett. 89 222512
[38] Yang Y, Zhang Y, Xu X, Geng S, Hou L, Li X, Ren Z and Wilde G 2017 J. Alloys Compd. 692 665
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[9] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[10] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[11] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[12] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[13] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[14] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[15] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
No Suggested Reading articles found!