CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy |
Chunjie Yan(晏春杰)1, Lina Chen(陈丽娜)1,2,†, Kaiyuan Zhou(周恺元)1, Liupeng Yang(杨留鹏)1, Qingwei Fu(付清为)1, Wenqiang Wang(王文强)1, Wen-Cheng Yue(岳文诚)3, Like Liang(梁力克)1, Zui Tao(陶醉)1, Jun Du(杜军)1, Yong-Lei Wang(王永磊)3, and Ronghua Liu(刘荣华)1,‡ |
1 National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 2 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 3 School of Electronics Science and Engineering, Nanjing University, Nanjing 210093, China |
|
|
Abstract We systematically investigated the Ni and Co thickness-dependent perpendicular magnetic anisotropy (PMA) coefficient, magnetic domain structures, and magnetization dynamics of Pt(5 nm)/[Co($t_{\rm Co}$)/Ni($t_{\rm Ni}$)]$_{5}$/Pt(1 nm) multilayers by combining the four standard magnetic characterization techniques. The magnetic-related hysteresis loops obtained from the field-dependent magnetization $M$ and anomalous Hall resistivity (AHR) $\rho_{{xy}}$ showed that the two serial multilayers with $t_{\rm Co} = 0.2$ nm and 0.3 nm have the optimum PMA coefficient $K_{\rm U}$ as well as the highest coercivity $H_{\rm C}$ at the Ni thickness $t_{\rm Ni}= 0.6 $ nm. Additionally, the magnetic domain structures obtained by magneto-optic Kerr effect (MOKE) microscopy also significantly depend on the thickness and $K_{\rm U}$ of the films. Furthermore, the thickness-dependent linewidth of ferromagnetic resonance is inversely proportional to $K_{\rm U}$ and $H_{\rm C}$, indicating that inhomogeneous magnetic properties dominate the linewidth. However, the intrinsic Gilbert damping constant determined by a linear fitting of the frequency-dependent linewidth does not depend on the Ni thickness and $K_{\rm U}$. Our results could help promote the PMA [Co/Ni] multilayer applications in various spintronic and spin-orbitronic devices.
|
Received: 18 January 2022
Revised: 02 March 2022
Accepted manuscript online: 10 March 2022
|
PACS:
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
75.70.Kw
|
(Domain structure (including magnetic bubbles and vortices))
|
|
75.40.Gb
|
(Dynamic properties?)
|
|
68.65.Ac
|
(Multilayers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774150, 12074178, 12004171, 12074189, and 51971109), the Applied Basic Research Programs of Science and Technology Commission Foundation of Jiangsu Province, China (Grant No. BK20170627), the National Key Research and Development Program of China (Grant No. 2018YFA0209002), the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology, and the Scientific Foundation of Nanjing University of Posts and Telecommunications (NUPTSF) (Grant No. NY220164). |
Corresponding Authors:
Lina Chen, Ronghua Liu
E-mail: chenlina@njupt.edu.cn;rhliu@nju.edu.cn
|
Cite this article:
Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华) Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy 2023 Chin. Phys. B 32 017503
|
[1] Li Q Y, Zhang P H, Li H T, Chen L N, Zhou K Y, Yan C J, Li L Y, Xu Y B, Zhang W X, Liu B, Meng H, Liu R H and Du Y W 2021 Chin. Phys. B 30 047504 [2] Yang M S, Fang L and Chi Y Q 2018 Chin. Phys. B 27 098504 [3] Zhu T 2014 Chin. Phys. B 23 047504 [4] Su Y C, Lei H Y and Hu J G 2015 Chin. Phys. B 24 097506 [5] Fu Q W, Zhou K Y, Chen L N, Xu Y B, Zhou T J, Wang D H, Chi K Q, Meng H, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 117501 [6] Liu R H, Lim W L and Urazhdin S 2015 Phys. Rev. Lett. 114 137201 [7] Chen L N, Gao Z Y, Zhou K Y, Du Y W and Liu R H 2021 Phys. Rev. Appl. 16 034044 [8] Chen L N, Chen Y, Zhou K Y, Li H T, Pu Y, Xu Y B, Du Y W and Liu R H 2021 Nanoscale 13 7838 [9] Li L Y, Chen L N, Liu R H and Du Y W 2020 Chin. Phys. B 29 117102 [10] Wang G Z, Zhang Z Z, Ma B and Jin Q Y 2013 J. Appl. Phys. 113 17 [11] Guo Y Y, Zhao F F, Xue H B and Liu Z J 2016 Chin. Phys. Lett. 33 037501 [12] Andrieu S, Hauet T, Gottwald M, Rajanikanth A, Calmels L, Bataille A M, Montaigne F, Mangin S, Otero E, Ohresser P, Le F'evre P, Bertran F, Resta A, Vlad A, Coati A and Garreau Y 2018 Phys. Rev. Mater. 2 064410 [13] Li R Z, Li Y C, Sheng Y and Wang K Y 2021 Chin. Phys. B 30 028506 [14] Song H S, Lee K D, Sohn J W, Yang S H, Parkin S S P, You C Y and Shin S C 2013 Appl. Phys. Lett. 102 102401 [15] Nakazawa S, Obinata A, Chiba D and Ueno K 2017 Appl. Phys. Lett. 110 062406 [16] Li Q Y, Xiong S Q, Chen L N, Zhou K Y, Xiang R X, Li H T, Gao Z Y, Liu R H and Du Y W 2021 Chin. Phys. Lett. 38 047501 [17] Huang L A, Wang M Y, Wang P, Yuan Y, Liu R B, Liu T Y, Lu Y, Chen J R, Wei L J, Zhang W, You B, Xu Q Y and Du J 2022 Chin. Phys. B 31 027506 [18] Chen L N, Urazhdin S, Zhou K Y, Du Y W and Liu R H 2020 Phys. Rev. Appl. 13 024034 [19] Chen L N, Gu Y Y, Zhou K Y, Li Z S, Li L Y, Gao Z Y, Du Y W and Liu R H 2021 Phys. Rev. B 103 144426 [20] Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z and Wang K Y 2017 Nat. Mater. 16 712 [21] Yang M Y, Cai K M, Ju H L, Edmonds K W, Yang G, Liu S, Li B H, Zhang B, Sheng Y, Wang S G, Ji Y and Wang K Y 2016 Sci. Rep. 6 20778 [22] Yang M Y, Deng Y C, Wu Z H, Cai K M, Edmonds K W, Li Y C, Sheng Y, Wang S M, Cui Y, Luo J, Ji Y, Zheng H Z and Wang K Y 2019 IEEE Electron Dev. Lett. 40 1554 [23] Cui Y W, Feng X Y, Zhang Q H, Zhou H A, Jiang W J, Cao J W, Xue D S and Fan X L 2021 Phys. Rev. B 103 024415 [24] Bai Q W, Guo B, Yin Q and Wang Sh Y 2022 Chin. Phys. B 31 017501 [25] Zhang P, Xie K X, Lin W W, Wu D and Sang H 2014 Appl. Phys. Lett. 104 082404 [26] Lohmann M, Su T, Niu B, Hou Y S, Alghamdi M, Aldosary M, Xing W Y, Zhong J N, Jia S, Han W, Wu R Q, Cui Y T and Shi J 2019 Nano Lett. 19 2397 [27] Chiba D, Kawaguchi M, Fukami S, Ishiwata N, Shimamura K, Kobayashi K and Ono T 2012 Nat. Commun. 3 1888 [28] Tang J X, Xu G Z, You Y R, Xu Z, Zhang Z, Chen X, Gong Y Y and Xu F 2020 Appl. Phys. Lett. 117 202402 [29] Hubert A and Schäfer R 1988 Magnetic Domains (World Publishing Corporation) p. 148 [30] Fu Q W, Li Y, Chen L N, Ma F S, Li H T, Xu Y B, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 087503 [31] Nembach H T, Silva T J, Shaw J M, Schneider M L, Carey M J, Maat S and Childress J R 2011 Phys. Rev. B 84 054424 [32] Mao S W, Lu J, Yang L, Ruan X Z, Wang H L, Wei D H, Xu Y B and Z J H 2020 Chin. Phys. Lett. 37 058501 [33] Xie H k, Pan L N, Cheng X H, Zhu Z T, Feng H M, Wang J B and Liu Q F 2018 J. Magn. Magn. Mater. 461 19 [34] Arora M, Hübner R, Suess D, Heinrich B and Girt E 2017 Phys. Rev. B 96 024401 [35] Kronmüller H, Durst K D and Sagawa M 1988 J. Magn. Magn. Mater. 74 291 [36] Shaw J M, Nembach H T and Silva T J 2010 J. Appl. Phys. 108 093922 [37] Platow W, Anisimov A N, Dunifer G L, Farle M and Baberschke K 1998 Phys. Rev. B 58 561 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|