Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017503    DOI: 10.1088/1674-1056/ac5c37
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy

Chunjie Yan(晏春杰)1, Lina Chen(陈丽娜)1,2,†, Kaiyuan Zhou(周恺元)1, Liupeng Yang(杨留鹏)1, Qingwei Fu(付清为)1, Wenqiang Wang(王文强)1, Wen-Cheng Yue(岳文诚)3, Like Liang(梁力克)1, Zui Tao(陶醉)1, Jun Du(杜军)1, Yong-Lei Wang(王永磊)3, and Ronghua Liu(刘荣华)1,‡
1 National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
2 School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
3 School of Electronics Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  We systematically investigated the Ni and Co thickness-dependent perpendicular magnetic anisotropy (PMA) coefficient, magnetic domain structures, and magnetization dynamics of Pt(5 nm)/[Co($t_{\rm Co}$)/Ni($t_{\rm Ni}$)]$_{5}$/Pt(1 nm) multilayers by combining the four standard magnetic characterization techniques. The magnetic-related hysteresis loops obtained from the field-dependent magnetization $M$ and anomalous Hall resistivity (AHR) $\rho_{{xy}}$ showed that the two serial multilayers with $t_{\rm Co} = 0.2$ nm and 0.3 nm have the optimum PMA coefficient $K_{\rm U}$ as well as the highest coercivity $H_{\rm C}$ at the Ni thickness $t_{\rm Ni}= 0.6 $ nm. Additionally, the magnetic domain structures obtained by magneto-optic Kerr effect (MOKE) microscopy also significantly depend on the thickness and $K_{\rm U}$ of the films. Furthermore, the thickness-dependent linewidth of ferromagnetic resonance is inversely proportional to $K_{\rm U}$ and $H_{\rm C}$, indicating that inhomogeneous magnetic properties dominate the linewidth. However, the intrinsic Gilbert damping constant determined by a linear fitting of the frequency-dependent linewidth does not depend on the Ni thickness and $K_{\rm U}$. Our results could help promote the PMA [Co/Ni] multilayer applications in various spintronic and spin-orbitronic devices.
Keywords:  perpendicular magnetic anisotropy      magnetic domain      damping      multiayers  
Received:  18 January 2022      Revised:  02 March 2022      Accepted manuscript online:  10 March 2022
PACS:  75.30.Gw (Magnetic anisotropy)  
  75.70.Kw (Domain structure (including magnetic bubbles and vortices))  
  75.40.Gb (Dynamic properties?)  
  68.65.Ac (Multilayers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774150, 12074178, 12004171, 12074189, and 51971109), the Applied Basic Research Programs of Science and Technology Commission Foundation of Jiangsu Province, China (Grant No. BK20170627), the National Key Research and Development Program of China (Grant No. 2018YFA0209002), the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology, and the Scientific Foundation of Nanjing University of Posts and Telecommunications (NUPTSF) (Grant No. NY220164).
Corresponding Authors:  Lina Chen, Ronghua Liu     E-mail:  chenlina@njupt.edu.cn;rhliu@nju.edu.cn

Cite this article: 

Chunjie Yan(晏春杰), Lina Chen(陈丽娜), Kaiyuan Zhou(周恺元), Liupeng Yang(杨留鹏), Qingwei Fu(付清为), Wenqiang Wang(王文强), Wen-Cheng Yue(岳文诚), Like Liang(梁力克), Zui Tao(陶醉), Jun Du(杜军),Yong-Lei Wang(王永磊), and Ronghua Liu(刘荣华) Thickness-dependent magnetic properties in Pt/[Co/Ni]n multilayers with perpendicular magnetic anisotropy 2023 Chin. Phys. B 32 017503

[1] Li Q Y, Zhang P H, Li H T, Chen L N, Zhou K Y, Yan C J, Li L Y, Xu Y B, Zhang W X, Liu B, Meng H, Liu R H and Du Y W 2021 Chin. Phys. B 30 047504
[2] Yang M S, Fang L and Chi Y Q 2018 Chin. Phys. B 27 098504
[3] Zhu T 2014 Chin. Phys. B 23 047504
[4] Su Y C, Lei H Y and Hu J G 2015 Chin. Phys. B 24 097506
[5] Fu Q W, Zhou K Y, Chen L N, Xu Y B, Zhou T J, Wang D H, Chi K Q, Meng H, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 117501
[6] Liu R H, Lim W L and Urazhdin S 2015 Phys. Rev. Lett. 114 137201
[7] Chen L N, Gao Z Y, Zhou K Y, Du Y W and Liu R H 2021 Phys. Rev. Appl. 16 034044
[8] Chen L N, Chen Y, Zhou K Y, Li H T, Pu Y, Xu Y B, Du Y W and Liu R H 2021 Nanoscale 13 7838
[9] Li L Y, Chen L N, Liu R H and Du Y W 2020 Chin. Phys. B 29 117102
[10] Wang G Z, Zhang Z Z, Ma B and Jin Q Y 2013 J. Appl. Phys. 113 17
[11] Guo Y Y, Zhao F F, Xue H B and Liu Z J 2016 Chin. Phys. Lett. 33 037501
[12] Andrieu S, Hauet T, Gottwald M, Rajanikanth A, Calmels L, Bataille A M, Montaigne F, Mangin S, Otero E, Ohresser P, Le F'evre P, Bertran F, Resta A, Vlad A, Coati A and Garreau Y 2018 Phys. Rev. Mater. 2 064410
[13] Li R Z, Li Y C, Sheng Y and Wang K Y 2021 Chin. Phys. B 30 028506
[14] Song H S, Lee K D, Sohn J W, Yang S H, Parkin S S P, You C Y and Shin S C 2013 Appl. Phys. Lett. 102 102401
[15] Nakazawa S, Obinata A, Chiba D and Ueno K 2017 Appl. Phys. Lett. 110 062406
[16] Li Q Y, Xiong S Q, Chen L N, Zhou K Y, Xiang R X, Li H T, Gao Z Y, Liu R H and Du Y W 2021 Chin. Phys. Lett. 38 047501
[17] Huang L A, Wang M Y, Wang P, Yuan Y, Liu R B, Liu T Y, Lu Y, Chen J R, Wei L J, Zhang W, You B, Xu Q Y and Du J 2022 Chin. Phys. B 31 027506
[18] Chen L N, Urazhdin S, Zhou K Y, Du Y W and Liu R H 2020 Phys. Rev. Appl. 13 024034
[19] Chen L N, Gu Y Y, Zhou K Y, Li Z S, Li L Y, Gao Z Y, Du Y W and Liu R H 2021 Phys. Rev. B 103 144426
[20] Cai K M, Yang M Y, Ju H L, Wang S M, Ji Y, Li B H, Edmonds K W, Sheng Y, Zhang B, Zhang N, Liu S, Zheng H Z and Wang K Y 2017 Nat. Mater. 16 712
[21] Yang M Y, Cai K M, Ju H L, Edmonds K W, Yang G, Liu S, Li B H, Zhang B, Sheng Y, Wang S G, Ji Y and Wang K Y 2016 Sci. Rep. 6 20778
[22] Yang M Y, Deng Y C, Wu Z H, Cai K M, Edmonds K W, Li Y C, Sheng Y, Wang S M, Cui Y, Luo J, Ji Y, Zheng H Z and Wang K Y 2019 IEEE Electron Dev. Lett. 40 1554
[23] Cui Y W, Feng X Y, Zhang Q H, Zhou H A, Jiang W J, Cao J W, Xue D S and Fan X L 2021 Phys. Rev. B 103 024415
[24] Bai Q W, Guo B, Yin Q and Wang Sh Y 2022 Chin. Phys. B 31 017501
[25] Zhang P, Xie K X, Lin W W, Wu D and Sang H 2014 Appl. Phys. Lett. 104 082404
[26] Lohmann M, Su T, Niu B, Hou Y S, Alghamdi M, Aldosary M, Xing W Y, Zhong J N, Jia S, Han W, Wu R Q, Cui Y T and Shi J 2019 Nano Lett. 19 2397
[27] Chiba D, Kawaguchi M, Fukami S, Ishiwata N, Shimamura K, Kobayashi K and Ono T 2012 Nat. Commun. 3 1888
[28] Tang J X, Xu G Z, You Y R, Xu Z, Zhang Z, Chen X, Gong Y Y and Xu F 2020 Appl. Phys. Lett. 117 202402
[29] Hubert A and Schäfer R 1988 Magnetic Domains (World Publishing Corporation) p. 148
[30] Fu Q W, Li Y, Chen L N, Ma F S, Li H T, Xu Y B, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 087503
[31] Nembach H T, Silva T J, Shaw J M, Schneider M L, Carey M J, Maat S and Childress J R 2011 Phys. Rev. B 84 054424
[32] Mao S W, Lu J, Yang L, Ruan X Z, Wang H L, Wei D H, Xu Y B and Z J H 2020 Chin. Phys. Lett. 37 058501
[33] Xie H k, Pan L N, Cheng X H, Zhu Z T, Feng H M, Wang J B and Liu Q F 2018 J. Magn. Magn. Mater. 461 19
[34] Arora M, Hübner R, Suess D, Heinrich B and Girt E 2017 Phys. Rev. B 96 024401
[35] Kronmüller H, Durst K D and Sagawa M 1988 J. Magn. Magn. Mater. 74 291
[36] Shaw J M, Nembach H T and Silva T J 2010 J. Appl. Phys. 108 093922
[37] Platow W, Anisimov A N, Dunifer G L, Farle M and Baberschke K 1998 Phys. Rev. B 58 561
[1] High repetition granular Co/Pt multilayers with improved perpendicular remanent magnetization for high-density magnetic recording
Zhi Li(李智), Kun Zhang(张昆), Ao Du(杜奥), Hongchao Zhang(张洪超), Weibin Chen(陈伟斌), Ning Xu(徐宁), Runrun Hao(郝润润), Shishen Yan(颜世申), Weisheng Zhao(赵巍胜), and Qunwen Leng(冷群文). Chin. Phys. B, 2023, 32(2): 026803.
[2] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[3] Effects of Landau damping and collision on stimulated Raman scattering with various phase-space distributions
Shanxiu Xie(谢善秀), Yong Chen(陈勇), Junchen Ye(叶俊辰), Yugu Chen(陈雨谷), Na Peng(彭娜), and Chengzhuo Xiao(肖成卓). Chin. Phys. B, 2022, 31(5): 055201.
[4] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[5] Gilbert damping in the layered antiferromagnet CrCl3
Xinlin Mi(米锌林), Ledong Wang(王乐栋), Qi Zhang(张琪), Yitong Sun(孙艺彤), Yufeng Tian(田玉峰), Shishen Yan(颜世申), and Lihui Bai(柏利慧). Chin. Phys. B, 2022, 31(2): 027505.
[6] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[7] Perpendicular magnetic anisotropy of Pd/Co2MnSi/NiFe2O4/Pd multilayers on F-mica substrates
Qingwang Bai(白青旺), Bin Guo(郭斌), Qin Yin(尹钦), and Shuyun Wang(王书运). Chin. Phys. B, 2022, 31(1): 017501.
[8] Magnetic dynamics of two-dimensional itinerant ferromagnet Fe3GeTe2
Lijun Ni(倪丽君), Zhendong Chen(陈振东), Wei Li(李威), Xianyang Lu(陆显扬), Yu Yan(严羽), Longlong Zhang(张龙龙), Chunjie Yan(晏春杰), Yang Chen(陈阳), Yaoyu Gu(顾耀玉), Yao Li(黎遥), Rong Zhang(张荣), Ya Zhai(翟亚), Ronghua Liu(刘荣华), Yi Yang(杨燚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2021, 30(9): 097501.
[9] Optimized growth of compensated ferrimagnetic insulator Gd3Fe5O12 with a perpendicular magnetic anisotropy
Heng-An Zhou(周恒安), Li Cai(蔡立), Teng Xu(许腾), Yonggang Zhao(赵永刚), and Wanjun Jiang(江万军). Chin. Phys. B, 2021, 30(9): 097503.
[10] RF magnetron sputtering induced the perpendicular magnetic anisotropy modification in Pt/Co based multilayers
Runze Li(李润泽), Yucai Li(李予才), Yu Sheng(盛宇), and Kaiyou Wang(王开友). Chin. Phys. B, 2021, 30(2): 028506.
[11] Magnetic anisotropy manipulation and interfacial coupling in Sm3Fe5O12 films and CoFe/Sm3Fe5O12 heterostructures
Lei Shen(沈磊), Guanjie Wu(武冠杰), Tao Sun(孙韬), Zhi Meng(孟智), Chun Zhou(周春), Wenyi Liu(刘文怡), Kang Qiu(邱康), Zongwei Ma(马宗伟), Haoliang Huang(黄浩亮), Yalin Lu(陆亚林), Zongzhi Zhang(张宗芝), and Zhigao Sheng(盛志高). Chin. Phys. B, 2021, 30(12): 127502.
[12] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
[13] Temperature-dependent Gilbert damping in Co2 FeAl thin films with different B2 ordering degrees
Gesang Dunzhu(格桑顿珠), Yi-Bing Zhao(赵逸冰), Ying Jin(金莹), Cai Zhou(周偲), and Chang-Jun Jiang(蒋长军). Chin. Phys. B, 2020, 29(12): 126701.
[14] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[15] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波)†, Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), and Jun Du(杜军)‡. Chin. Phys. B, 2020, 29(10): 107503.
No Suggested Reading articles found!