Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017201    DOI: 10.1088/1674-1056/ac904d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks

Ningjing Yang(杨柠境)1, Hai Yang(杨海)1,†, and Guojun Jin(金国钧)1,2,‡
1 School of Physics Science and Technology, Kunming University, Kunming 650214, China;
2 National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  Biphenylene is a new topological material that has attracted much attention recently. By amplifying its size of unit cell, we construct a series of planar structures as homogeneous carbon allotropes in the form of polyphenylene networks. We first use the low-energy effective model to prove the topological three periodicity for these allotropes. Then, through first-principles calculations, we show that the topological phase has the Dirac point. As the size of per unit cell increases, the influence of the quaternary rings decreases, leading to a reduction in the anisotropy of the system, and the Dirac cone undergoes a transition from type II to type I. We confirm that there are two kinds of non-trivial topological phases with gapless and gapped bulk dispersion. Furthermore, we add a built-in electric field to the gapless system by doping with B and N atoms, which opens a gap for the bulk dispersion. Finally, by manipulating the built-in electric field, the dispersion relations of the edge modes will be transformed into a linear type. These findings provide a hopeful approach for designing the topological carbon-based materials with controllable properties of edge states.
Keywords:  polyphenylene      interface      band structure      Zak phase      edge state  
Received:  12 July 2022      Revised:  25 August 2022      Accepted manuscript online:  08 September 2022
PACS:  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  72.25.-b (Spin polarized transport)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
  66.35.+a (Quantum tunneling of defects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074156 and 12164023) and the Yunnan Local College Applied Basic Research Projects (Grant No. 2021Y710).
Corresponding Authors:  Hai Yang, Guojun Jin     E-mail:  kmyangh@263.net;gjin@nju.edu.cn

Cite this article: 

Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧) Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks 2023 Chin. Phys. B 32 017201

[1] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[2] Burkov A A 2016 Nat. Mater. 15 1145
[3] Ying X and Kamenev A 2018 Phys. Rev. Lett. 121 086810
[4] Xie L C, Wu H C, Jin L and Song Z 2021 Phys. Rev. B 104 165422
[5] Fang C, Weng H M, Dai X and Fang Z 2016 Chin. Phys. B 25 117106
[6] Pei C Y, Xia Y, Wu J Z, Zhao Y, Gao L L, Ying T P, Gao B, Li N N, Yang W G, Zhang D Z, Gou H Y, Chen Y L, Hosono H, Li G and Qi Y P 2020 Chin. Phys. Lett. 37 066401
[7] Zhai X and Jin G 2014 Phys. Rev. B 89 085430
[8] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[9] Liu F and Wakabayashi K 2017 Phys. Rev. Lett. 118 076803
[10] Obana D, Liu F and Wakabayashi K 2019 Phys. Rev. B 100 075437
[11] Kameda T, Liu F, Dutta S and Wakabayashi K 2019 Phys. Rev. B 99 075426
[12] Sheng X L, Chen C, Liu H Y, Chen Z Y, Yu Z M, Zhao Y X and Yang S A 2019 Phys. Rev. Lett. 123 256402
[13] Miert G V, Ortix C and Smith C M 2017 2D Mater. 4 015023
[14] Fang C, Gilbert M J and Bernevig B A 2012 Phys. Rev. B 86 115112
[15] Fu L and Kane C L 2007 Phys. Rev. B 76 045302
[16] Kaciulis S, Mezzi A, Calvanib P and Trucchi D M 2015 Surf. Interface Anal. 46 10
[17] Sheng X L, Cui H J, Ye F, Yan Q B, Zheng Q R and Su G 2012 J. Appl. Phys. 112 074315
[18] Weng H M, Liang Y Y, Xu Q A, Yu R, Fang Z, Dai Xi and Kawazoe Y 2015 Phys. Rev. B 92 045108
[19] Wang J T, Nie S M, Weng H M, Kawazoe Y and Chen C F 2018 Phys. Rev. Lett. 120 026402
[20] Fan Q, Yan L, Tripp M W, Krejčl O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P and Gottfried J M 2021 Science 372 852
[21] Liu P F, Li J, Zhang C, Tu X H, Zhang J, Zhang P, Wang B T and Singh D J 2021 Phys. Rev. B 104 235422
[22] Hamada N, Sawada S I and Oshiyama A 1992 Phys. Rev. Lett. 68 1579
[23] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[24] Cao T, Zhao F and Louie S G 2017 Phys. Rev. Lett. 119 076401
[25] Hu C and Guo H 2020 Appl. Phys. Lett. 117 083101
[26] Gröning O, Wang S, Yao X, Pignedoli C A, Barin G B, Daniels C, Cupo A, Meunier V, Feng X, Narita A, Müllen K, Ruffieux P and Fasel R 2018 Nature 560 209
[27] Rizzo D J, Veber G, Cao T, Bronner C, Chen T, Zhao F, Rodriguez H, Louie S G, Crommie M F and Fischer F R 2018 Nature 560 204
[28] Chen X W, Shi Z G, Xiang S H, Song K H and Zhou G H 2017 J. Phys. Condens. Matter 29 085301
[29] Zhou Y C, Zhang H L and Deng W Q 2013 Nanotechnology 24 225705
[30] Zhang H H, Xie Y E, Zhong C Y, Zhang Z W and Chen Y P 2017 J. Phys. Chem. C 121 12476
[31] Shang L, Liu P F, Gao H, Wu W, Wang Y, Gao Z B, Wang B T and Ren W 2021 Phys. Status Solidi RRL 16 2100203
[32] Yan P, Ouyang T, He C, Li J, Zhang C, Tang C and Zhong J X 2021 Nanoscale 13 3564
[33] Freitas R R Q, Rivelino R, de Brito Mota F and de Castilho C M C 2015 J. Phys. Chem. C 119 23599
[34] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[35] QuantumATK version Q-2018.6, Synopsys QuantumATK, http://www. quantum wise.com
[36] Liu M Z, Liu M X, She L M, Zha Z Q, Pan J L, Li S C, Li T, He Y Y, Cai Z Y, Wang J B, Zheng Y, Qiu X H and Zhong D Y 2017 Nat. Commun. 8 14924
[37] Kong W X, Wang R, Xiao X L, Zhan F Y, Gan L Y, Wei J, Fan J and Wu X Z 2021 J. Phys. Chem. Lett. 12 10874
[38] Xie Y E, Kang Y, Li S, Yan X H and Chen Y P 2021 Appl. Phys. Lett. 118 193101
[39] Wu X, Feng Y, Li S, Zhang B and Gao G 2020 J. Phys. Chem. C 124 16127
[40] Lu S, Shi Y, Zhou W, Zhang Z, Wu F and Zhang B 2022 J. Am. Chem. Soc. 144 3250
[41] Slawińska J, Zasada I and Klusek Z 2010 Phys. Rev. B 81 155433
[42] Roman-Taboada P and Naumis G G 2017 Phys. Rev. B 96 155435
[1] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[2] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[5] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[8] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[9] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[10] Surface-induced orbital-selective band reconstruction in kagome superconductor CsV3Sb5
Linwei Huai(淮琳崴), Yang Luo(罗洋), Samuel M. L. Teicher, Brenden R. Ortiz, Kaize Wang(王铠泽),Shuting Peng(彭舒婷), Zhiyuan Wei(魏志远), Jianchang Shen(沈建昌), Bingqian Wang(王冰倩), Yu Miao(缪宇),Xiupeng Sun(孙秀鹏), Zhipeng Ou(欧志鹏), Stephen D. Wilson, and Junfeng He(何俊峰). Chin. Phys. B, 2022, 31(5): 057403.
[11] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[12] Bias-induced reconstruction of hybrid interface states in magnetic molecular junctions
Ling-Mei Zhang(张令梅), Yuan-Yuan Miao(苗圆圆), Zhi-Peng Cao(曹智鹏), Shuai Qiu(邱帅), Guang-Ping Zhang(张广平), Jun-Feng Ren(任俊峰), Chuan-Kui Wang(王传奎), and Gui-Chao Hu(胡贵超). Chin. Phys. B, 2022, 31(5): 057303.
[13] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[14] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[15] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
No Suggested Reading articles found!