Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 017102    DOI: 10.1088/1674-1056/ac5e94
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation

Lu Peng(彭璐)1, Qiangqiang Zhang(张强强)1, Na Wang(王娜)1, Zhonghao Xia(夏中昊)1, Yajiu Zhang(张亚九)2, Zhigang Wu(吴志刚)2, Enke Liu(刘恩克)3, and Zhuhong Liu(柳祝红)1,†
1 Department of Physics, University of Science and Technology Beijing, Beijing 100083, China;
2 School of Civil Engineering, Guangzhou University, Guangzhou 510006, China;
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  The structure of the all-d-metal alloy Ni$_{50-x}$Co$_{x}$Mn$_{25}$V$_{25}$ ($x = 0$-50) is investigated by using theoretical and experimental methods. The first-principles calculations indicate that the most stable structure of the Ni$_{2}$MnV alloy is face-centered cubic (fcc) type structure with ferrimagnetic state and the equilibrium lattice constant is 3.60 Å, which is in agreement with the experimental result. It is remarkable that replacing partial Ni with Co can turn the alloy from the fcc structure to the B2-type Heusler structure as Co content $x > 37$ by using the melting spinning method, implying that the d-d hybridization between Co/Mn elements and low-valent elements V stabilizes the Heusler structure. The Curie temperature $T_{\rm C}$ of all-d-metal Heuser alloy Ni$_{50-x}$Co$_{x}$Mn$_{25}$V$_{25}$ ($x > 37$) increases almost linearly with the increase of Co due to that the interaction of Co-Mn is stronger than that of Ni-Mn. A magnetic transition from ferromagnetic state to weak magnetic state accompanying with grinding stress induced transformation from B2 to the dual-phase of B2 and fcc has been observed in these all-d-metal Heusler alloys. This phase transformation and magnetic change provide a guide to overcome the brittleness and make the all-d-metal Heusler alloy interesting in stress and magnetic driving structural transition.
Keywords:  all-d-metal Heusler alloy      grinding induced phase transformation      phase stability  
Received:  01 January 2022      Revised:  12 March 2022      Accepted manuscript online:  17 March 2022
PACS:  71.20.Be (Transition metals and alloys)  
  71.20.Lp (Intermetallic compounds)  
  61.05.cp (X-ray diffraction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51671024 and 52088101), State Key Lab of Advanced Metals and Materials (Grant No. 2019- Z12), and the Fundamental Research Funds for the Central Universities (Grant No. FRF-BD-20-12A).
Corresponding Authors:  Zhuhong Liu     E-mail:  zhliu@ustb.edu.cn

Cite this article: 

Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红) Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation 2023 Chin. Phys. B 32 017102

[1] de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[2] Balke B, Fecher G H, Kandpal H C, Felser C, Kobayashi K, Ikenaga E, Kim J J and Ueda S 2006 Phys. Rev. B 74 104405
[3] Chen C, Wang H Q, Yang Z L and Zhang H J 2021 Chin. Phys. Lett. 38 057302
[4] Wang Q, Du Q H, Petrovic C and Lei H C 2020 Chin. Phys. Lett. 37 027502
[5] Sakuraba Y, Izumi K, Iwase T, Bosu S, Saito K and Takanashi K 2010 Phys. Rev. B 82 094444
[6] Zhang X, Cui T Y, Liu Q S, Dong Z Z and Man C 2021 J. Alloys Compd. 858 157685
[7] Liu Y F, Zhang X X, Xing D W, Shen H X, Chen D M, Liu J S and Sun J F 2014 J. Alloys Compd. 616 184
[8] Hirschberger M, Kushwaha S, Wang Z J, Gibson Q, Liang S H, Belvin C A, Berneving B A, Cava R G and Ong N P 2016 Nat. Mater. 15 1161
[9] Dulal R P, Dahal B R, Forbes A, Bhattari N, Pegg L and Philip J 2019 Sci. Rep. 9 3342
[10] Swekis P, Sukhanov A S, Chen Y C, Gloskovskii A, Fecher G H, Panagiotopoulos I, Sichelschmidt J, Ukleev V, Devishvili A, Vorobiev A, Inosov D S, Goennenwein S T B, Felser C and Markou A 2021 Nanomaterials 11 251
[11] Leiva L, Granville S, Zhang Y, Dushenko S, Shigematsu E, Shinjo T, Ohshima R, Ando Y and ShiraishiLeiva M 2021 Phys. Rev. B 103 L041114
[12] Niculescu V, Burch T J, Rag K and Budnick J I 1977 J. Magn. Magn. Mater. 5 60
[13] Gelatt C D, Williams A R and Moruzzi V L 1983 Phys. Rev. B 27 2005
[14] Wei Z Y, Liu E K, Chen J H, Li Y, Liu G D, Luo H Z, Xi X K, Zhang H W, Wang W H and Wu G H 2015 Appl. Phys. Lett. 107 022406
[15] Zeng Q Q, Shen J L, Zhang H N, Chen J, Ding B, Xi X K, Liu E K, Wang W H and Wu G H 2019 J. Phys.: Condens. Mat. 31 425401
[16] Abdallah I, Pradines B, Ratel-Ramond N, BenAssayag G, Arras R, Calmels L, Bobo J F, Snoeck E and Biziere N 2017 J. Phys. D: Appl. Phys. 50 035003
[17] Vargova Z, Ryba T, Ilkovic S, Reiffers M, Komanicky V, Gyepes R and Varga R 2015 J. Electr. Eng. 66 98
[18] Yuhasz W M, Schlagel D L, Xing Q, McCallum R W and Lograsso T A 2010 J. Alloys Compd. 492 681
[19] Kudryavtsev Y V, Oksenenko V A, Lee N N, Lee Y P, Rhee J Y and Dubowik J 2005 J. Appl. Phys. 97 113903
[20] Oksenenkoa V A, Kulagina V A, Kudryavtseva Y V, Dubowikb J, Go'cian'sciiacute skac I and Troshchenkov Y N 2007 J. Magn. Magn. Mater. 316 e407
[21] Shen J L, Zeng Q Q, Zhang H G, Xia X K, Liu E K and Wu G H 2019 J. Magn. Magn. Mater. 492 165661
[22] Sanvito S, Oses C, Xue J K, Tiwari A, Zic M, Archer T, Tozman P, Venkatesan M, Coey M and Curtarolo S 2017 Sci. Adv. 3 e1602241
[23] de Paula V G, de Oliveira L S, Mendes Filho A A, Rios C T and Souza J A 2020 J. Mater. Res. 35 3004
[24] Yan H L, Wang L D, Liu H X, Huang X X, Jia N, Li Z B, Yang B, Zhang Y D, Esling C, Zhao X and Zuo L 2019 Mater. Des. 184 108180
[25] de Paula V G and Reis M S 2021 Chem. Mater. 33 5483
[26] Sun K C, Shi X Y, Gao R R and Luo H Z 2021 J. Phys. Chem. Solids 157 110204
[27] Zeng Q Q, Shen J L, Liu E K, Xue K X, Wang W H, Wu G H and Xi X Z 2020 Chin. Phys. Lett. 37 076101
[28] Balke B, Fecher G H, Winterlik J and Felser C 2007 Appl. Phys. Lett. 90 152504
[29] Kharel P, Huh Y, Al-Aqtash N, Shah V R, Sabirianov R F, Skomski R and Sellmyer D J 2014 J. Phys.: Condens. Mat. 26 126001
[30] Guo J P, Zhong M T, Zhou W, Zhang Y J, Wu Z G, Li Y C, Zhang J S, Liu Y N and Yang H 2021 Mater. 14 2339
[31] Walnsch A, Kriegel M J, Motylenko M, Korpala G, Prahl U and Leineweber A 2021 Scr. Mater. 192 26
[32] Zhang Y J, Wu Z G, Hou Z P, Liu Z H, Liu E K, Xi X K, Wang W H and Wu G H 2021 Appl. Phys. Lett. 119 142402
[33] Han Y L, Wu M X, Feng Y, Cheng Z X, Lin T T, Yang T, Khenata R and Wang X T 2019 IUCrJ 6 465
[34] Tan J G, Liu Z H, Zhang Y J, Li G T, Zhang H G, Liu G D and Ma X Q 2019 Results Phys. 12 1182
[35] Ruan J J, Wang C P, Yang S Y, Kainuma R and Liu X J 2014 J. Alloys Compd. 615 998
[36] Hafner J 2007 Comput. Phys. Commun. 177 6
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891
[39] Faleev S V, Ferrante Y, Jeong J, Samant M G, Jones B and Parkinet S P 2017 Phys. Rev. A 7 034022
[40] De Freitas J M, da Veiga L M and Gonschorek W 1982 Port. Phys. 13 113
[41] Zhang H G, Chen J, Liu E K, Yue M, Liu G D, Lu Q M, Wang W H and Wu G H 2019 Intermetallics 106 71
[42] Liu K, Ma S C, Ma C C, Han X Q, Yu K, Yang S, Zhang Z S, Song Y, Luo X H, Chen C C and Rehman S U 2019 J. Alloys Compd. 790 78
[43] Webster P J 1969 Contemp. Phys. 10 559
[44] Guan Z Q, Bai J, Gu J L, Liang X Z, Liu D, Jiang X J, Huang R K, Zhang Y D, Esling C, Zhao X and Zuo L 2021 J. Mater. Sci. Technol. 68 103
[1] Synthesis and thermoelectric properties of Mn-doped AgSbTe2 compounds
Zhang He (张贺), Luo Jun (骆军), Zhu Hang-Tian (朱航天), Liu Quan-Lin (刘泉林), Liang Jing-Kui (梁敬魁), Li Jing-Bo (李静波), Liu Guang-Yao (刘广耀). Chin. Phys. B, 2012, 21(10): 106101.
No Suggested Reading articles found!