CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread |
Zhenzhen Miao(苗珍珍)1, Can Cao(曹粲)2, Bei Zhang(张蓓)1, Haiming Duan(段海明)1, Mengqiu Long(龙孟秋)1,2 |
1 Institute of Low-dimensional Quantum Materials and Devices, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China; 2 Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China |
|
|
Abstract The diamond nanothread (DNT), a new one-dimensional (1D) full carbon sp3 structure that has been successfully synthesized recently, has attracted widespread attention in the carbon community. By using the first-principles calculation method of density functional theory (DFT), we have studied the effects of 3d transition metal (TM) atomic doping on the electronic and magnetic properties of DNT. The results show that the spin-polarized semiconductor characteristics are achieved by doping Sc, V, Cr, Mn, and Co atoms in the DNT system. The magnetic moment ranges from 1.00 μB to 3.00 μB and the band gap value is from 0.35 eV to 2.54 eV. The Fe-doped DNT system exhibits spin-metallic state with a magnetic moment of 2.58 μB, while the Ti and Ni-doped DNT systems are nonmagnetic semiconductors. These results indicate that the 3d TM atoms doping can modulate the electronic and magnetic properties of 1D-DNT effectively, and the TM-doped DNT systems have potential applications in the fields of electronics, optoelectronics, and spintronics.
|
Received: 27 February 2020
Revised: 26 March 2020
Accepted manuscript online:
|
PACS:
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
62.23.Hj
|
(Nanowires)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21673296 and 11664038) and the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China (Grant No. 2019D01C038). |
Corresponding Authors:
Haiming Duan, Mengqiu Long
E-mail: dhm@xju.edu.cn;mqlong@csu.edu.cn
|
Cite this article:
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋) Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread 2020 Chin. Phys. B 29 066101
|
[1] |
Liu J, Rinzler A G, Dai H, Hafuer J H, Bradley R K, Boul P J, Lu A, Iverson T, Shelimov K, Huffman C B, Rodriguez-Macias F, Shon Y S, Lee T R, Colbert D T and Smally R E 1998 Science 280 1253
|
[2] |
Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162
|
[3] |
Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F and Yan H 2003 Adv. Mater. 15 353
|
[4] |
Zhang D, Long M Q, Zhang X, Ouyang F, Li M and Xu H 2015 J. Appl. Phys. 117 014311
|
[5] |
Zhang H 2015 ACS Nano 9 9451
|
[6] |
Peng D D, Zhang X J, Li X B, Wu D and Long M Q 2018 J. Appl. Phys. 124 184303
|
[7] |
Long M Q, Tang L, Wang D, Li Y L and Shuai Z 2011 ACS Nano 5 2593
|
[8] |
Fitzgibbons T C, Guthrie M, Xu E S, Crespi V H, Davidowski S K, Cody G D, Alem N and Badding J V 2015 Nat. Mater. 14 43
|
[9] |
Stojkovic D, Zhang P and Crespi V H 2001 Phys. Rev. Lett. 87 125502
|
[10] |
Wu W, Bo T, Shan G, Yang S A and Gang Z 2018 J. Phys. Chem. C 122 3101
|
[11] |
Silveira J F R V and Muuiz A R 2017 Carbon 113 260
|
[12] |
Feng C, Xu J, Zhang Z and Wu J 2017 Carbon 124 9
|
[13] |
Xiao J, Chen M M, Liu W J, He J, Pan C N and Long M Q 2019 Physica E 111 37
|
[14] |
Podlivaev A I and Openov L A 2017 Semiconductors 51 636
|
[15] |
Openov L A and Podlivaev A I 2016 JETP Lett. 104 193
|
[16] |
Zhan H, Gang Z, Zhang Y, Tan V B C, Bell J M and Gu Y 2016 Carbon 98 232
|
[17] |
Zhan H, Gang Z, Bell J M and Gu Y 2016 Carbon 107 304
|
[18] |
Zhu T and Ertekin E 2016 Nano Lett. 16 4763
|
[19] |
Zhao J, Buldum A, Han J and Ping L J 2000 Phys. Rev. Lett. 85 1706
|
[20] |
Jing L and Nagase S 2004 Phys. Rev. B 69 205304
|
[21] |
Jo C, Kim C and Lee Y H 2002 Phys. Rev. B 65 035420
|
[22] |
Mirzaei M and Nouri A 2010 J. Mol. Struct. Theochem. 942 83
|
[23] |
Dong Q, Li X M, Tian W Q, Huang X R and Sun C C 2010 J. Mol. Struct. Theochem. 948 83
|
[24] |
Durgun E, Jang Y R and Ciraci S 2007 Phys. Rev. B 76 73413
|
[25] |
Yao K L, Min Y, Zhu S C, Gao G Y, Liu Z L and Cheng H G 2008 Phys. Lett. A 372 5609
|
[26] |
Li Y F, Zhou Z, Shen P W and Chen Z F 2009 ACS Nano 3 1952
|
[27] |
Shan S Y, Wei T Z and Jiang Q 2010 IEEE T. Nanotechnol. 9 78
|
[28] |
He K H, Zhang G, Chen G, Wan M and Ji G F 2008 Physica B 403 4213
|
[29] |
Li X M, Wei Q T, Qi D, Huang X R, Sun C C and Lei J 2011 Comput. Theor. Chem. 964 199
|
[30] |
Yang G, Xu S, Wei Z, Ma T and Wu C 2016 Phys. Rev. B 94 075104
|
[31] |
Jiang J, Wang X and Yan S 2018 Comput. Mater. Sci. 153 10
|
[32] |
Luo Y, Ren C, Wang S, Li S, Zhang P, Yu J, Sun M, Sun Z and Tang W 2018 Nanoscale Res. Lett. 13 282
|
[33] |
Babar R and Kabir M 2016 J. Phys. Chem. C 120 14991
|
[34] |
Yu W, Zhu Z, Niu C Y, Li C J Cho H and Jia Y 2016 Nanoscale Res. Lett. 11 77
|
[35] |
Andriotis A N and Menon M 2014 Phys. Rev. B 90 125304
|
[36] |
Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H and Cao M S 2018 Physica E 104 247
|
[37] |
Lia Y H, Gong P, Li S L, Ma W H, Fang X Y, Yang Y Y and Cao M S 2020 Phys. Lett. A 384 126106
|
[38] |
Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
|
[39] |
Kresse G 1995 J. Non-Cryst. Solids 192-193 222
|
[40] |
Kresse G and Furthmülle J 1996 Phys. Rev. B 54 11169
|
[41] |
Sun M L, Slanina Z and Lee S L 1995 Chem. Phys. Lett. 233 279
|
[42] |
Li Y L, Gong P and Fang X Y 2020 Chin. Phys. B 29 037304
|
[43] |
Ma Y, Lehtinen P O, Foster A S and Nieminen R M 2004 New J. Phys. 6 68
|
[44] |
Stern R, Dongre B and Madsen G K H 2016 Nanotechnology 27 334002
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|