Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 066101    DOI: 10.1088/1674-1056/ab84dd
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread

Zhenzhen Miao(苗珍珍)1, Can Cao(曹粲)2, Bei Zhang(张蓓)1, Haiming Duan(段海明)1, Mengqiu Long(龙孟秋)1,2
1 Institute of Low-dimensional Quantum Materials and Devices, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China;
2 Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  The diamond nanothread (DNT), a new one-dimensional (1D) full carbon sp3 structure that has been successfully synthesized recently, has attracted widespread attention in the carbon community. By using the first-principles calculation method of density functional theory (DFT), we have studied the effects of 3d transition metal (TM) atomic doping on the electronic and magnetic properties of DNT. The results show that the spin-polarized semiconductor characteristics are achieved by doping Sc, V, Cr, Mn, and Co atoms in the DNT system. The magnetic moment ranges from 1.00 μB to 3.00 μB and the band gap value is from 0.35 eV to 2.54 eV. The Fe-doped DNT system exhibits spin-metallic state with a magnetic moment of 2.58 μB, while the Ti and Ni-doped DNT systems are nonmagnetic semiconductors. These results indicate that the 3d TM atoms doping can modulate the electronic and magnetic properties of 1D-DNT effectively, and the TM-doped DNT systems have potential applications in the fields of electronics, optoelectronics, and spintronics.
Keywords:  diamond nanothread      transition metal atom      doping      electronic and magnetic property  
Received:  27 February 2020      Revised:  26 March 2020      Accepted manuscript online: 
PACS:  61.46.-w (Structure of nanoscale materials)  
  62.23.Hj (Nanowires)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21673296 and 11664038) and the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China (Grant No. 2019D01C038).
Corresponding Authors:  Haiming Duan, Mengqiu Long     E-mail:  dhm@xju.edu.cn;mqlong@csu.edu.cn

Cite this article: 

Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋) Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread 2020 Chin. Phys. B 29 066101

[1] Liu J, Rinzler A G, Dai H, Hafuer J H, Bradley R K, Boul P J, Lu A, Iverson T, Shelimov K, Huffman C B, Rodriguez-Macias F, Shon Y S, Lee T R, Colbert D T and Smally R E 1998 Science 280 1253
[2] Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162
[3] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F and Yan H 2003 Adv. Mater. 15 353
[4] Zhang D, Long M Q, Zhang X, Ouyang F, Li M and Xu H 2015 J. Appl. Phys. 117 014311
[5] Zhang H 2015 ACS Nano 9 9451
[6] Peng D D, Zhang X J, Li X B, Wu D and Long M Q 2018 J. Appl. Phys. 124 184303
[7] Long M Q, Tang L, Wang D, Li Y L and Shuai Z 2011 ACS Nano 5 2593
[8] Fitzgibbons T C, Guthrie M, Xu E S, Crespi V H, Davidowski S K, Cody G D, Alem N and Badding J V 2015 Nat. Mater. 14 43
[9] Stojkovic D, Zhang P and Crespi V H 2001 Phys. Rev. Lett. 87 125502
[10] Wu W, Bo T, Shan G, Yang S A and Gang Z 2018 J. Phys. Chem. C 122 3101
[11] Silveira J F R V and Muuiz A R 2017 Carbon 113 260
[12] Feng C, Xu J, Zhang Z and Wu J 2017 Carbon 124 9
[13] Xiao J, Chen M M, Liu W J, He J, Pan C N and Long M Q 2019 Physica E 111 37
[14] Podlivaev A I and Openov L A 2017 Semiconductors 51 636
[15] Openov L A and Podlivaev A I 2016 JETP Lett. 104 193
[16] Zhan H, Gang Z, Zhang Y, Tan V B C, Bell J M and Gu Y 2016 Carbon 98 232
[17] Zhan H, Gang Z, Bell J M and Gu Y 2016 Carbon 107 304
[18] Zhu T and Ertekin E 2016 Nano Lett. 16 4763
[19] Zhao J, Buldum A, Han J and Ping L J 2000 Phys. Rev. Lett. 85 1706
[20] Jing L and Nagase S 2004 Phys. Rev. B 69 205304
[21] Jo C, Kim C and Lee Y H 2002 Phys. Rev. B 65 035420
[22] Mirzaei M and Nouri A 2010 J. Mol. Struct. Theochem. 942 83
[23] Dong Q, Li X M, Tian W Q, Huang X R and Sun C C 2010 J. Mol. Struct. Theochem. 948 83
[24] Durgun E, Jang Y R and Ciraci S 2007 Phys. Rev. B 76 73413
[25] Yao K L, Min Y, Zhu S C, Gao G Y, Liu Z L and Cheng H G 2008 Phys. Lett. A 372 5609
[26] Li Y F, Zhou Z, Shen P W and Chen Z F 2009 ACS Nano 3 1952
[27] Shan S Y, Wei T Z and Jiang Q 2010 IEEE T. Nanotechnol. 9 78
[28] He K H, Zhang G, Chen G, Wan M and Ji G F 2008 Physica B 403 4213
[29] Li X M, Wei Q T, Qi D, Huang X R, Sun C C and Lei J 2011 Comput. Theor. Chem. 964 199
[30] Yang G, Xu S, Wei Z, Ma T and Wu C 2016 Phys. Rev. B 94 075104
[31] Jiang J, Wang X and Yan S 2018 Comput. Mater. Sci. 153 10
[32] Luo Y, Ren C, Wang S, Li S, Zhang P, Yu J, Sun M, Sun Z and Tang W 2018 Nanoscale Res. Lett. 13 282
[33] Babar R and Kabir M 2016 J. Phys. Chem. C 120 14991
[34] Yu W, Zhu Z, Niu C Y, Li C J Cho H and Jia Y 2016 Nanoscale Res. Lett. 11 77
[35] Andriotis A N and Menon M 2014 Phys. Rev. B 90 125304
[36] Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H and Cao M S 2018 Physica E 104 247
[37] Lia Y H, Gong P, Li S L, Ma W H, Fang X Y, Yang Y Y and Cao M S 2020 Phys. Lett. A 384 126106
[38] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[39] Kresse G 1995 J. Non-Cryst. Solids 192-193 222
[40] Kresse G and Furthmülle J 1996 Phys. Rev. B 54 11169
[41] Sun M L, Slanina Z and Lee S L 1995 Chem. Phys. Lett. 233 279
[42] Li Y L, Gong P and Fang X Y 2020 Chin. Phys. B 29 037304
[43] Ma Y, Lehtinen P O, Foster A S and Nieminen R M 2004 New J. Phys. 6 68
[44] Stern R, Dongre B and Madsen G K H 2016 Nanotechnology 27 334002
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[5] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[6] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[7] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[8] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[9] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[10] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[11] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[12] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[15] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
No Suggested Reading articles found!