CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates |
Zhenzhen Wang(王珍珍)1,2, Weiheng Qi(戚炜恒)2,3, Jiachang Bi(毕佳畅)4, Xinyan Li(李欣岩)1, Yu Chen(陈雨)3, Fang Yang(杨芳)1, Yanwei Cao(曹彦伟)4, Lin Gu(谷林)5, Qinghua Zhang(张庆华)1, Huanhua Wang(王焕华)3, Jiandi Zhang(张坚地)1, Jiandong Guo(郭建东)1,2,6,†, and Xiaoran Liu(刘笑然)1,‡ |
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 4 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; 5 Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 6 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We report comprehensive investigations into the structure of high-quality (111)-oriented SrRuO3 films on SrTiO3 substrates to elucidate the effect of (111) heteroepitaxial strain. We found that SrRuO3 film with a thickness of ~ 40 nm is compressively strained in plane on the substrate with full coherency. Nevertheless, the out-of-plane spacing is almost the same as in the bulk, which is at odds with the conventional paradigm. By probing a series of half-order Bragg reflections using synchrotron-based x-ray diffraction combined with analyses of the scanning transmission electron microscopy images, we discovered that the heteroepitaxial strain is accommodated via significant suppression of the degree of c+ octahedral tilting and the formation of three equivalent domain structures on the (111) SrTiO3 substrate. This anomalous effect sheds light on the understanding of an unconventional paradigm of film-substrate coupling for the (111) heteroepitaxial strain.
|
Received: 04 May 2022
Revised: 19 June 2022
Accepted manuscript online: 05 August 2022
|
PACS:
|
68.55.-a
|
(Thin film structure and morphology)
|
|
77.80.bn
|
(Strain and interface effects)
|
|
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303600), the National Natural Science Foundation of China (Grant No. 11974409), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB33000000). |
Corresponding Authors:
Jiandong Guo, Xiaoran Liu
E-mail: jdguo@iphy.ac.cn;xiaoran.liu@iphy.ac.cn
|
Cite this article:
Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然) Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates 2022 Chin. Phys. B 31 126801
|
[1] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103 [2] Chakhalian J, Freeland J W, Millis A J, Panagopoulos C and Rondinelli J M 2014 Rev. Mod. Phys. 86 1189 [3] Ohtomo A and Hwang H Y 2004 Nature 427 423 [4] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y and Hwang H Y 2019 Nature 572 624 [5] Bhattacharya A, May S J, Te Velthuis S G E, Warusawithana M, Zhai X, Jiang B, Zuo J M, Fitzsimmons M R, Bader S D and Eckstein J N 2008 Phys. Rev. Lett. 100 257203 [6] Huang Z, Ariando, Renshaw Wang X, Rusydi A, Chen J, Yang H and Venkatesan T 2018 Adv. Mater. 30 1802439 [7] Peña M A and Fierro J L G 2001 Chem. Rev. 101 1981 [8] Dagotto E and Tokura Y 2008 MRS Bulletin 33 1037 [9] Yoon S, Gao X, Ok J M, Liao Z, Han M G, Zhu Y, Ganesh P, Chisholm M F, Choi W S and Lee H N 2021 Nano Lett. 21 4006 [10] Vailionis A, Boschker H, Siemons W, Houwman E P, Blank D H A, Rijnders G and Koster G 2011 Phys. Rev. B 83 064101 [11] Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Van Aert S, Verbeeck J, Van Tendeloo G, Held K, Sawatzky G A, Koster G and Rijnders G 2016 Nat. Mater. 15 425 [12] Kan D, Aso R, Sato R, Haruta M, Kurata H and Shimakawa Y 2016 Nat. Mater. 15 432 [13] Aso R, Kan D, Shimakawa Y and Kurata H 2013 Sci. Rep. 3 2214 [14] Aso R, Kan D, Shimakawa Y and Kurata H 2014 Adv. Funct. Mater. 24 5177 [15] Adamo C, Ke X, Wang H Q, Xin H L, Heeg T, Hawley M E, Zander W, Schubert J, Schiffer P, Muller D A, Maritato L and Schlom D G 2009 Appl. Phys. Lett. 95 112504 [16] Moreau M, Marthinsen A, Selbach S M and Tybell T 2017 Phys. Rev. B 95 064109 [17] Rondinelli J, May S and Freeland J 2012 MRS Bulletin 37 261 [18] Aruta C, Ghiringhelli G, Tebano A, Boggio N G, Brookes N B, Medaglia P G and Balestrino G 2006 Phys. Rev. B 73 235121 [19] He J, Borisevich A, Kalinin S V, Pennycook S J and Pantelides S T 2010 Phys. Rev. Lett. 105 227203 [20] Kinyanjui M K, Lu Y, Gauquelin N, Wu M, Frano A, Wochner P, Reehuis M, Christiani G, Logvenov G, Habermeier H U, Botton G A, Kaiser U, Keimer B and Benckiser E 2014 Appl. Phys. Lett. 104 221909 [21] Chakhalian J, Liu X and Fiete G A 2020 APL Mater. 8 050904 [22] Wang Y, Liang Y, Meng M, An Q, Ge B, Liu M, Yang F and Guo J 2020 J. Appl. Phys. 128 035301 [23] Saghayezhian M, Wang Z, Guo H, Zhu Y, Plummer E W and Zhang J 2017 Phys. Rev. B 95 165434 [24] Kim T H, Puggioni D, Yuan Y, Xie L, Zhou H, Campbell N, Ryan P J, Choi Y, Kim J W, Patzner J R, Ryu S, Podkaminer J P, Irwin J, Ma Y, Fennie C J, Rzchowski M S, Pan X Q, Gopalan V, Rondinelli J M and Eom C B 2016 Nature 533 68 [25] Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C-B, Blank D H A and Beasley M R 2012 Rev. Mod. Phys. 84 253 [26] Glazer A M 1975 Acta Cryst. A31 756 [27] Lee B, Kwon O U, Shin R H, Jo W and Jung C U 2014 Nanoscale Research Letters 9 8 [28] Zhang Q, Jin C H, Xu H T, Zhang L Y, Ren X B, Ouyang Y, Wang X J, Yue X J and Lin F 2018 Micron 113 99 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|