Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 126801    DOI: 10.1088/1674-1056/ac8725
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates

Zhenzhen Wang(王珍珍)1,2, Weiheng Qi(戚炜恒)2,3, Jiachang Bi(毕佳畅)4, Xinyan Li(李欣岩)1, Yu Chen(陈雨)3, Fang Yang(杨芳)1, Yanwei Cao(曹彦伟)4, Lin Gu(谷林)5, Qinghua Zhang(张庆华)1, Huanhua Wang(王焕华)3, Jiandi Zhang(张坚地)1, Jiandong Guo(郭建东)1,2,6,†, and Xiaoran Liu(刘笑然)1,‡
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
4 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
5 Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
6 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We report comprehensive investigations into the structure of high-quality (111)-oriented SrRuO3 films on SrTiO3 substrates to elucidate the effect of (111) heteroepitaxial strain. We found that SrRuO3 film with a thickness of ~ 40 nm is compressively strained in plane on the substrate with full coherency. Nevertheless, the out-of-plane spacing is almost the same as in the bulk, which is at odds with the conventional paradigm. By probing a series of half-order Bragg reflections using synchrotron-based x-ray diffraction combined with analyses of the scanning transmission electron microscopy images, we discovered that the heteroepitaxial strain is accommodated via significant suppression of the degree of c+ octahedral tilting and the formation of three equivalent domain structures on the (111) SrTiO3 substrate. This anomalous effect sheds light on the understanding of an unconventional paradigm of film-substrate coupling for the (111) heteroepitaxial strain.
Keywords:  perovskite SrRuO3      (111)-oriented thin films      heteroepitaxial strain      octahedral tilt and rotation  
Received:  04 May 2022      Revised:  19 June 2022      Accepted manuscript online:  05 August 2022
PACS:  68.55.-a (Thin film structure and morphology)  
  77.80.bn (Strain and interface effects)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303600), the National Natural Science Foundation of China (Grant No. 11974409), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB33000000).
Corresponding Authors:  Jiandong Guo, Xiaoran Liu     E-mail:  jdguo@iphy.ac.cn;xiaoran.liu@iphy.ac.cn

Cite this article: 

Zhenzhen Wang(王珍珍), Weiheng Qi(戚炜恒), Jiachang Bi(毕佳畅), Xinyan Li(李欣岩), Yu Chen(陈雨), Fang Yang(杨芳), Yanwei Cao(曹彦伟), Lin Gu(谷林), Qinghua Zhang(张庆华), Huanhua Wang(王焕华), Jiandi Zhang(张坚地), Jiandong Guo(郭建东), and Xiaoran Liu(刘笑然) Anomalous strain effect in heteroepitaxial SrRuO3 films on (111) SrTiO3 substrates 2022 Chin. Phys. B 31 126801

[1] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103
[2] Chakhalian J, Freeland J W, Millis A J, Panagopoulos C and Rondinelli J M 2014 Rev. Mod. Phys. 86 1189
[3] Ohtomo A and Hwang H Y 2004 Nature 427 423
[4] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y and Hwang H Y 2019 Nature 572 624
[5] Bhattacharya A, May S J, Te Velthuis S G E, Warusawithana M, Zhai X, Jiang B, Zuo J M, Fitzsimmons M R, Bader S D and Eckstein J N 2008 Phys. Rev. Lett. 100 257203
[6] Huang Z, Ariando, Renshaw Wang X, Rusydi A, Chen J, Yang H and Venkatesan T 2018 Adv. Mater. 30 1802439
[7] Peña M A and Fierro J L G 2001 Chem. Rev. 101 1981
[8] Dagotto E and Tokura Y 2008 MRS Bulletin 33 1037
[9] Yoon S, Gao X, Ok J M, Liao Z, Han M G, Zhu Y, Ganesh P, Chisholm M F, Choi W S and Lee H N 2021 Nano Lett. 21 4006
[10] Vailionis A, Boschker H, Siemons W, Houwman E P, Blank D H A, Rijnders G and Koster G 2011 Phys. Rev. B 83 064101
[11] Liao Z, Huijben M, Zhong Z, Gauquelin N, Macke S, Green R J, Van Aert S, Verbeeck J, Van Tendeloo G, Held K, Sawatzky G A, Koster G and Rijnders G 2016 Nat. Mater. 15 425
[12] Kan D, Aso R, Sato R, Haruta M, Kurata H and Shimakawa Y 2016 Nat. Mater. 15 432
[13] Aso R, Kan D, Shimakawa Y and Kurata H 2013 Sci. Rep. 3 2214
[14] Aso R, Kan D, Shimakawa Y and Kurata H 2014 Adv. Funct. Mater. 24 5177
[15] Adamo C, Ke X, Wang H Q, Xin H L, Heeg T, Hawley M E, Zander W, Schubert J, Schiffer P, Muller D A, Maritato L and Schlom D G 2009 Appl. Phys. Lett. 95 112504
[16] Moreau M, Marthinsen A, Selbach S M and Tybell T 2017 Phys. Rev. B 95 064109
[17] Rondinelli J, May S and Freeland J 2012 MRS Bulletin 37 261
[18] Aruta C, Ghiringhelli G, Tebano A, Boggio N G, Brookes N B, Medaglia P G and Balestrino G 2006 Phys. Rev. B 73 235121
[19] He J, Borisevich A, Kalinin S V, Pennycook S J and Pantelides S T 2010 Phys. Rev. Lett. 105 227203
[20] Kinyanjui M K, Lu Y, Gauquelin N, Wu M, Frano A, Wochner P, Reehuis M, Christiani G, Logvenov G, Habermeier H U, Botton G A, Kaiser U, Keimer B and Benckiser E 2014 Appl. Phys. Lett. 104 221909
[21] Chakhalian J, Liu X and Fiete G A 2020 APL Mater. 8 050904
[22] Wang Y, Liang Y, Meng M, An Q, Ge B, Liu M, Yang F and Guo J 2020 J. Appl. Phys. 128 035301
[23] Saghayezhian M, Wang Z, Guo H, Zhu Y, Plummer E W and Zhang J 2017 Phys. Rev. B 95 165434
[24] Kim T H, Puggioni D, Yuan Y, Xie L, Zhou H, Campbell N, Ryan P J, Choi Y, Kim J W, Patzner J R, Ryu S, Podkaminer J P, Irwin J, Ma Y, Fennie C J, Rzchowski M S, Pan X Q, Gopalan V, Rondinelli J M and Eom C B 2016 Nature 533 68
[25] Koster G, Klein L, Siemons W, Rijnders G, Dodge J S, Eom C-B, Blank D H A and Beasley M R 2012 Rev. Mod. Phys. 84 253
[26] Glazer A M 1975 Acta Cryst. A31 756
[27] Lee B, Kwon O U, Shin R H, Jo W and Jung C U 2014 Nanoscale Research Letters 9 8
[28] Zhang Q, Jin C H, Xu H T, Zhang L Y, Ren X B, Ouyang Y, Wang X J, Yue X J and Lin F 2018 Micron 113 99
[1] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[2] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[3] Molecular beam epitaxy growth of quantum devices
Ke He(何珂). Chin. Phys. B, 2022, 31(12): 126804.
[4] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[5] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[6] Porous AlN films grown on C-face SiC by hydride vapor phase epitaxy
Jiafan Chen(陈家凡), Jun Huang(黄俊), Didi Li(李迪迪), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(7): 076802.
[7] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[8] Synthesis of flower-like WS2 by chemical vapor deposition
Jin-Zi Ding(丁金姿), Wei Ren(任卫), Ai-Ling Feng(冯爱玲), Yao Wang(王垚), Hao-Sen Qiao(乔浩森), Yu-Xin Jia(贾煜欣), Shuang-Xiong Ma(马双雄), and Bo-Yu Zhang(张博宇). Chin. Phys. B, 2021, 30(12): 126201.
[9] Scalable fabrication of Bi2O2Se polycrystalline thin film for near-infrared optoelectronic devices applications
Bin Liu(刘斌) and Hong Zhou(周洪). Chin. Phys. B, 2021, 30(10): 106803.
[10] Phase transition-induced superstructures of β-Sn films with atomic-scale thickness
Le Lei(雷乐), Feiyue Cao(曹飞跃), Shuya Xing(邢淑雅), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑锋), Shangzhi Gu(顾尚志), Yanyan Geng(耿燕燕), Shuo Mi(米烁), Hanxiang Wu(吴翰翔), Fei Pang(庞斐), Rui Xu(许瑞), Wei Ji(季威), and Zhihai Cheng(程志海). Chin. Phys. B, 2021, 30(9): 096804.
[11] Water and nutrient recovery from urine: A lead up trail using nano-structured In2S3 photo electrodes
R Jayakrishnan, T R Sreerev, and Adith Varma. Chin. Phys. B, 2021, 30(5): 056103.
[12] Preparation of AlN film grown on sputter-deposited and annealed AlN buffer layer via HVPE
Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Xu-Jun Su(苏旭军), Jun Huang(黄俊), Mu-Tong Niu(牛牧童), Jin-Tong Xu(许金通), and Ke Xu(徐科). Chin. Phys. B, 2021, 30(3): 036801.
[13] Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers
Yong Li(李勇), Xiao-Ming Li(李晓明), Rui-Ting Hao(郝瑞亭), Jie Guo(郭杰), Yu Zhuang(庄玉), Su-Ning Cui(崔素宁), Guo-Shuai Wei(魏国帅), Xiao-Le Ma(马晓乐), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川), and Yao Wang(王耀). Chin. Phys. B, 2021, 30(2): 028504.
[14] Epitaxial synthesis and electronic properties of monolayer Pd2Se3
Peng Fan(范朋), Rui-Zi Zhang(张瑞梓), Jing Qi(戚竞), En Li(李恩), Guo-Jian Qian(钱国健), Hui Chen(陈辉), Dong-Fei Wang(王东飞), Qi Zheng(郑琦), Qin Wang(汪琴), Xiao Lin(林晓), Yu-Yang Zhang(张余洋), Shixuan Du(杜世萱), Hofer W A, Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(9): 098102.
[15] Epitaxial growth of antimony nanofilms on HOPG and thermal desorption to control the film thickness
Shuya Xing(邢淑雅), Le Lei(雷乐), Haoyu Dong(董皓宇), Jianfeng Guo(郭剑峰), Feiyue Cao(曹飞跃), Shangzhi Gu(顾尚志), Sabir Hussain, Fei Pang(庞斐), Wei Ji(季威), Rui Xu(许瑞), Zhihai Cheng(程志海). Chin. Phys. B, 2020, 29(9): 096801.
No Suggested Reading articles found!