Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 098102    DOI: 10.1088/1674-1056/abab80
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Epitaxial synthesis and electronic properties of monolayer Pd2Se3

Peng Fan(范朋)1, Rui-Zi Zhang(张瑞梓)1, Jing Qi(戚竞)1, En Li(李恩)1, Guo-Jian Qian(钱国健)1, Hui Chen(陈辉)1, Dong-Fei Wang(王东飞)1, Qi Zheng(郑琦)1, Qin Wang(汪琴)1, Xiao Lin(林晓)1,2, Yu-Yang Zhang(张余洋)1,2, Shixuan Du(杜世萱)1,2, Hofer W A1,3, Hong-Jun Gao(高鸿钧)1,2
1 Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences(CAS), Beijing 100190, China;
2 CAS Center for Excellence in Topological Quantum Computation, Beijing 100190, China;
3 School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne Ne77 RU, UK
Abstract  

Two-dimensional (2D) materials received large amount of studies because of the enormous potential in basic science and industrial applications. Monolayer Pd2Se3 is a fascinating 2D material that was predicted to possess excellent thermoelectric, electronic, transport, and optical properties. However, the fabrication of large-scale and high-quality monolayer Pd2Se3 is still challenging. Here, we report the synthesis of large-scale and high-quality monolayer Pd2Se3 on graphene-SiC (0001) by a two-step epitaxial growth. The atomic structure of Pd2Se3 was investigated by scanning tunneling microscope (STM) and confirmed by non-contact atomic force microscope (nc-AFM). Two subgroups of Se atoms have been identified by nc-AFM image in agreement with the theoretically predicted atomic structure. Scanning tunneling spectroscopy (STS) reveals a bandgap of 1.2 eV, suggesting that monolayer Pd2Se3 can be a candidate for photoelectronic applications. The atomic structure and defect levels of a single Se vacancy were also investigated. The spatial distribution of STS near the Se vacancy reveals a highly anisotropic electronic behavior. The two-step epitaxial synthesis and characterization of Pd2Se3 provide a promising platform for future investigations and applications.

Keywords:  2D material      Pd2Se3      scanning tunneling microscope/spectroscopy      non-contact atomic force microscope  
Received:  21 May 2020      Revised:  15 July 2020      Accepted manuscript online:  01 August 2020
PACS:  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
  68.55.-a (Thin film structure and morphology)  
  71.22.+i (Electronic structure of liquid metals and semiconductors and their Alloys)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0202300, 2018YFA0305800, and 2019YFA0308500), the National Natural Science Foundation of China (Grant Nos. 51922011, 51872284, and 61888102), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB30000000 and XDB28000000), and the Science Fund from University of the Chinese Academy of Sciences.

Corresponding Authors:  Shixuan Du, Hong-Jun Gao     E-mail:  sxdu@iphy.ac.cn;hjgao@iphy.ac.cn

Cite this article: 

Peng Fan(范朋), Rui-Zi Zhang(张瑞梓), Jing Qi(戚竞), En Li(李恩), Guo-Jian Qian(钱国健), Hui Chen(陈辉), Dong-Fei Wang(王东飞), Qi Zheng(郑琦), Qin Wang(汪琴), Xiao Lin(林晓), Yu-Yang Zhang(张余洋), Shixuan Du(杜世萱), Hofer W A, Hong-Jun Gao(高鸿钧) Epitaxial synthesis and electronic properties of monolayer Pd2Se3 2020 Chin. Phys. B 29 098102

[1] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[2] Kumar S and Schwingenschlögl U 2015 Chem. Mater. 27 1278
[3] Li E, Zhang R Z, Li H, Liu C, Li G, Wang J O, Qian T, Ding H, Zhang Y Y, Du S X, Lin X and Gao H J 2018 Chin. Phys. B 27 086804
[4] Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G H, Sindoro M and Zhang H 2017 Chem. Rev. 117 6225
[5] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[6] Chen S and Shi G 2017 Adv. Mater. 29 1605448
[7] Qian K, Gao L, Li H, Zhang S, Yan J H, Liu C, Wang J O, Qian T, Ding H, Zhang Y Y, Lin X, Du S X and Gao H J 2020 Chin. Phys. B 29 018104
[8] Zeng Y, Zhang S, Li X, Ao J, Sun Y, Liu W, Liu F, Gao P and Zhang Y 2019 Chin. Phys. B 28 058101
[9] Zhang S, Song Y, Li H, Li J M, Qian K, Liu C, Wang J O, Qian T, Zhang Y Y, Lu J C, Ding H, Lin X, Pan J, Du S X and Gao H J 2020 Chin. Phys. Lett. 37 068103
[10] Geim A K and Grigorieva I V 2013 Nature 499 419
[11] Wu J, Schmidt H, Amara K K, Xu X, Eda G and Ozyilmaz B 2014 Nano Lett. 14 2730
[12] Yoshida M, Iizuka T, Saito Y, Onga M, Suzuki R, Zhang Y, Iwasa Y and Shimizu S 2016 Nano Lett. 16 2061
[13] Lu J, Bao D L, Qian K, Zhang S, Chen H, Lin X, Du S X and Gao H J 2017 ACS Nano 11 1689
[14] Liu Z L, Lei B, Zhu Z L, Tao L, Qi J, Bao D L, Wu X, Huang L, Zhang Y Y, Lin X, Wang Y L, Du S, Pantelides S T and Gao H J 2019 Nano Lett. 19 4897
[15] Liu H, Bao L, Zhou Z, Che B, Zhang R, Bian C, Ma R, Wu L, Yang H, Li J, Gu C, Shen C M, Du S and Gao H J 2019 Nano Lett. 19 4551
[16] Yang S Z, Sun W, Zhang Y Y, Gong Y, Oxley M P, Lupini A R, Ajayan P M, Chisholm M F, Pantelides S T and Zhou W 2019 Phys. Rev. Lett. 122 106101
[17] Gao L, Sun J T, Lu J C, Li H, Qian K, Zhang S, Zhang Y Y, Qian T, Ding H, Lin X, Du S and Gao H J 2018 Adv. Mater. 30 1707055
[18] Liang Q, Wang Q, Zhang Q, Wei J, Lim S X, Zhu R, Hu J, Wei W, Lee C, Sow C, Zhang W and Wee A T S 2019 Adv. Mater. 31 1807609
[19] Oyedele A D, Yang S, Feng T, Haglund A V, Gu Y, Puretzky A A, Briggs D, Rouleau C M, Chisholm M F, Unocic R R, Mandrus D, Meyer H M, Pantelides S T, Geohegan D B and Xiao K 2019 J. Am. Chem. Soc. 141 8928
[20] Lin J, Zuluaga S, Yu P, Liu Z, Pantelides S T and Suenaga K 2017 Phys. Rev. Lett. 119 016101
[21] Naghavi S S, He J, Xia Y and Wolverton C 2018 Chem. Mater. 30 5639
[22] Zhu X, Li F, Wang Y, Qiao M and Li Y 2018 J. Mater. Chem. C 6 4494
[23] Li X, Zhang S, Guo Y, Wang F Q and Wang Q 2018 Nanomaterials (Basel) 8 832
[24] Chen J, Ryu G H, Sinha S and Warner J H 2019 ACS Nano 13 8256
[25] Ryu G H, Zhu T, Chen J, Sinha S, Shautsova V, Grossman J C and Warner J H 2019 Adv. Mater. 31 1904251
[26] Wang Q, Zhang W, Wang L, He K, Ma X and Xue Q 2013 J. Phys.: Condens. Matter 25 095002
[27] Riedl C, Starke U, Bernhardt J, Franke M and Heinz K 2007 Phys. Rev. B 76 245406
[28] Li E, Wang D, Fan P, Zhang R, Zhang Y Y, Li G, Mao J, Wang Y, Lin X, Du S X and Gao H J 2018 Nano Res. 11 5858
[29] Bartels L, Meyer G and Rieder K H 1997 Appl. Phys. Lett. 71 213
[30] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[31] Blöchl P E 1994 Phys. Rev. B 50 17953
[32] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[33] Tersoff J and Hamann D R 1985 Phys. Rev. B 31 805
[34] Toberer E S, Zevalkink A and Snyder G J 2011 J. Mater. Chem. 21 15843
[35] Poudel B, Hao Q, Ma Y, Lan Y, Minnich A, Yu B, Yan X, Wang D, Muto A and Vashaee D 2008 Science 320 634
[1] A novel two-dimensional SiO sheet with high-stability, strain tunable electronic structure, and excellent mechanical properties
Shijie Liu(刘世杰) and Hui Du(杜慧). Chin. Phys. B, 2021, 30(7): 076104.
[2] Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain
Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋). Chin. Phys. B, 2021, 30(6): 067102.
[3] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[4] Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures
Peng Fan(范朋), Guojian Qian(钱国健), Dongfei Wang(王东飞), En Li(李恩), Qin Wang(汪琴), Hui Chen(陈辉), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(1): 018105.
[5] Raman spectroscopy characterization of two-dimensional materials
Fang Liang(梁芳), Hejun Xu(徐何军), Xing Wu(吴幸), Chaolun Wang(王超伦), Chen Luo(骆晨), Jian Zhang(张健). Chin. Phys. B, 2018, 27(3): 037802.
[6] Light-matter interaction of 2D materials: Physics and device applications
Zi-Wei Li(李梓维), Yi-Han Hu(胡义涵), Yu Li(李瑜), Zhe-Yu Fang(方哲宇). Chin. Phys. B, 2017, 26(3): 036802.
No Suggested Reading articles found!