Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿)1,2, Peng-Peng Shi(时朋朋)2,†, San-Qing Su(苏三庆)2,‡, and Zhi Zeng(曾志)3
1 School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; 2 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; 3 School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China
Abstract Melting of crystalline material is a common physical phenomenon, yet it remains elusive owing to the diversity in physical pictures. In this work, we proposed a deep learning architecture to learn the physical states (solid- or liquid-phase) from the atomic trajectories of the bulk crystalline materials with four typical lattice types. The method has ultra-high accuracy (higher than 95%) for the classification of solid-liquid atoms during the phase transition process and is almost insensitive to temperature. The atomic physical states are identified from atomic behaviors without considering any characteristic threshold parameter, which yet is necessary for the classical methods. The phase transition of bulk crystalline materials can be correctly predicted by learning from the atomic behaviors of different materials, which confirms the close correlation between atomic behaviors and atomic physical states. These evidences forecast that there should be a more general undiscovered physical quantity implicated in the atomic behaviors and elucidate the nature of bulk crystalline melting.
Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2019M663935XB), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2019JQ-261), and the National Natural Science Foundation of China (Grant Nos. 11802225 and 51878548).
Corresponding Authors:
Peng-Peng Shi, San-Qing Su
E-mail: shipengpeng@xjtu.edu.cn;sussqx@xauat.edu.cn
Cite this article:
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志) Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation 2022 Chin. Phys. B 31 126402
[1] Cahn R W 1978 Nature273 491 [2] Ihm Y, Cho D H, Sung D, et al. 2019 Nat. Commun.10 2411 [3] Wang L N, Zhao X Yu, Zhou H W, Zhang Li and Huang Y N 2019 Chin. Phys. B28 96401 [4] Fujinaga T and Shibuta Y 2019 Comp. Mater. Sci.164 74 [5] Kavousi S, Novak B R, Zaeem M A and Moldovan D 2019 Comp. Mater. Sci.163 218 [6] Ueno K and Shibuta Y 2019 Comp. Mater. Sci.167 1 [7] Shao M Z, Wang Y T and Zhou X 2020 Chin. Phys. B29 80505 [8] Honeycutt J D and Andersen H C 1987 J. Phys. Chem.91 4950 [9] Stukowski A 2012 Model. Simul. Mater. Sc.20 450214 [10] Steinhardt P J, Nelson D R and Ronchetti M 1983 Phys. Rev. B28 784 [11] Maras E, Trushin O, Stukowski A, Ala-Nissila T and Jónsson H 2016 Comput. Phys. Commun.205 13 [12] Lümmen N and Kraska T 2007 Model. Simul. Mater. Sc.15 319 [13] Larsen P M, Schmidt S and Schiotz J 2016 Model. Simul. Mater. Sc.24 55007 [14] Lindemann F A 1910 Z. Phys.11 609 [15] Guardiola R and Navarro J 2011 J. Phys. Chem. A115 6843 [16] Weber T A and Stillinger F H 1980 Phys. Rev. B22 3790 [17] Jin Z H, Gumbsch P, Lu K and Ma E 2001 Phys. Rev. Lett.87 557035 [18] Fan X, Pan D and Li M 2020 Acta Mater.193 280 [19] Liang T S, Zhou D J, Wu Z H and Shi P P 2017 Nanotechnology28 485704 [20] Vopson M M, Rogers N and Hepburn I 2020 Solid State Commun.318 113977 [21] Liu Y, Zou X X, Yang Z W and Shi S Q 2022 J. Chin. Chem. Soc.50 863 [22] Liu Y, Guo B R, Zou X X, Li Y J and Shi S Q 2020 Energy Stor. Mater.31 434 [23] Zhang J, Liu Y M and Tu Z C 2022 Chin. Phys. B31 94502 [24] Pu J C, Li J and Chen Y 2021 Chin. Phys. B30 60202 [25] Fukuya T and Shibuta Y 2020 Comp. Mater. Sci.184 109880 [26] Freitas R and Reed E J 2020 Nat. Commun.11 3260 [27] Zeni C, Rossi K, Pavloudis T, et al. 2021 Nat. Commun.2 6056 [28] Chibani S and Coudert F X 2020 Apl. Mater.8 80701 [29] Parrinello M and Behler J 2007 Phys. Rev. Lett.98 146401 [30] Lin F J, Liao J J, Wu J C and Ai B Q 2022 Chin. Phys. B31 36401 [31] Szegedy C, Liu W, Jia Y Q, et al. 2014 arXiv:1409.4842[cs.CV]. [32] Foiles S M, Baskes M I and Daw M S 1986 Phys. Rev. B33 7983 [33] Mendelev M I, Han S, Srolovitz D J, et al. 2003 Philos. Mag.83 3977 [34] Mendelev M I, Becker C A, Kudin K, et al. 2006 Phys. Rev. B73 24116 [35] Weber T A and Stillinger F H 1985 Phys. Rev. B31 5262 [36] Onat B and Durukanoglu S 2013 J. Phys. Condens. Matter26 35404 [37] Plimpton S 1995 J. Comput. Phys.117 1 [38] Einstein 1905 Ann. d. Phys.17 549
Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.