Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪)1 and Jin-Wu Jiang(江进武)1,2,†
1 Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, China; 2 Zhejiang Laboratory, Hangzhou 311100, China
Abstract The yttria-stabilized zirconia (YSZ) is a famous thermal barrier coating material to protect hot-end components of an engine. As a characteristic feature of the YSZ, the surface roughness shall play an important role in the interface thermal conductance between the YSZ and gas, considering that the gas is typically at an extremely high temperature. We investigate the effect of the surface roughness on the thermal conductance of the YSZ-gas interface with surface roughness described by nanoscale pores on the surface of the YSZ. We reveal two competitive mechanisms related to the microstructure of the pore, i.e., the actual contact area effect and the confinement effect. The increase of the pore depth will enlarge the actual contact area between the YSZ and gas, leading to enhancement of the solid-gas interface thermal conductance. In contrast to the positive actual contact area effect, the geometry-induced confinement effect greatly reduces the interface thermal conductance. These findings shall offer some fundamental understandings for the microscopic mechanisms of the YSZ-gas interface thermal conductance.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11822206 and 12072182), the Innovation Program of the Shanghai Municipal Education Commission (Grant No. 2017-01-07-00-09-E00019), the Key Research Project of Zhejiang Laboratory, and the National Supercomputing Center in Zhengzhou (Grant No. 2021PE0AC02).
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武) Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect 2022 Chin. Phys. B 31 126802
[1] Guo S, Tanaka Y and Kagawa Y 2007 J. Eur. Ceram. Soc.27 3425 [2] Padture N P, Gell M and Jordan E H 2002 Science296 280 [3] Clarke D R, Oechsner M and Padture N P 2012 MRS Bull.37 891 [4] Wang L, Zhong X, Zhao Y, Yang J, Tao S, Zhang W, Wang Y and Sun X 2014 Int. J. Heat Mass Transfer79 954 [5] Koolloos M, Van Liempd G and Houben J 1998 Surf. Eng.14 144 [6] Unal O, Mitchell T E and Heuer A H 1994 J. Am. Ceram. Soc.77 984 [7] Hass D, Slifka A J and Wadley H 2001 Acta Mater.49 973 [8] Strangman T E 1985 Thin Solid Films127 93 [9] Schulz U, Oettel H and Bunk W 1996 Int. J. Mater. Res.87 488 [10] Zhao H, Levi C G and Wadley H N 2014 Surf. Coat. Technol.251 74 [11] Zhang G, Fan X, Xu R, Su L and Wang T 2018 Ceram. Int.44 12655 [12] Litovskii E Y 1972 J. Eng. Phys.22 768 [13] Nicholls J R, Lawson K, Johnstone A and Rickerby D 2002 Surf. Coat. Technol.151 383 [14] Renteria A F, Saruhan B, Schulz U, Raetzer-Scheibe H J, Haug J and Wiedenmann A 2006 Surf. Coat. Technol.201 2611 [15] Kapitza P 1941 Phys. Rev.60 354 [16] Chen S, Moore A L, Cai W, Suk J W, An J, Mishra C, Amos C, Magnuson C W, Kang J, Shi L and Ruoff R S 2011 ACS Nano5 321 [17] Cheng C, Fan W, Cao J, Ryu S G, Ji J, Grigoropoulos C P and Wu J 2011 ACS Nano5 10102 [18] Wang S, Xu J L and Zhang L Y 2017 Acta Phys. Sin.67 204704 (in Chinese) [19] Wang T Y, Zhang G X and Li D Y 2021 Chin. Phys. B30 128101 [20] Hu S, Zhao C Y and Gu X 2022 Chin. Phys. B31 056301 [21] Markvoort A J, Hilbers P and Nedea S 2005 Phys. Rev. E71 066702 [22] Liang Z and Keblinski P 2014 Int. J. Heat Mass Transfer78 161 [23] Rabani R, Heidarinejad G, Harting J and Shirani E 2020 Int. J. Therm. Sci.153 106394 [24] Zhang C, Deng Z and Chen Y 2014 Int. J. Heat Mass Transfer70 322 [25] Liang Z, Evans W and Keblinski P 2013 Phys. Rev. E87 022119 [26] Giri A, Braun J L and Hopkins P E 2016 J. Phys. Chem. C120 24847 [27] Day B S and Morris J R 2005 J. Chem. Phys.122 234714 [28] Liang Z, Evans W, Desai T and Keblinski P 2013 Appl. Phys. Lett.102 061907 [29] Zhao S, Shao C, Zahiri S, Zhao C and Bao H 2018 J. Shanghai Jiaotong Univ. (Sci.)23 38 [30] Lin T, Li X and Cheng P 2018 Int. J. Heat Mass Transfer97 118 [31] Song Z, Cui Z, Cao Q, Liu Y and Li J 2021 J. Mol. Liq.337 116052 [32] Cao B Y, Chen M and Guo Z Y 2004 Chin. Phys. Lett.21 1777 [33] Mei T, Chen Z X, Yang L, Wang K and Miao R C 2019 Acta Phys. Sin.68 094701 (in Chinese) [34] Hass D, Slifka A J and Wadley H 2001 Acta Mater.49 973 [35] Buckingham R A 1938 Proc. R. Soc. London A168 264 [36] Schelling P K, Phillpot S R and Wolf D 2001 J. Am. Ceram. Soc.84 1609 [37] Rappé A K, Casewit C J, Colwell K, Goddard III W A and Skiff W M 1992 J. Am. Ceram. Soc.114 10024 [38] Lorentz H A 1881 Ann. Phys. (Berlin)248 127 [39] Berthelot D 1898 Comptes Rendus Hebdomadaires des Séances de L'Académie des Sciences 126 1703 [40] Nosé S 1984 J. Chem. Phys.81 511 [41] Hoover W G 1985 Phys. Rev. A31 1695 [42] Plimpton S 1995 J. Comput. Phys.117 1 [43] Stukowski A 2009 Model. Simul. Mater. Sci. Eng.18 015012 [44] Stoner R and Maris H 1993 Phys. Rev. B48 16373 [45] Bond J W, Watson K M, Welch J A and Fu X L 1965 Atomic Theory of Gas Dynamics (Beijing: Science Press) pp. 10-15 (in Chinese) [46] Zhang B J, Wang B X and Zhao C Y 2014 Int. J. Heat Mass Transfer73 59 [47] Bao H, Yan C, Wang B, Fang X, Zhao C Y and Ruan X 2017 Sol. Energ. Mater. Sol. Cells168 78
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.