Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 110306    DOI: 10.1088/1674-1056/ac597b
GENERAL Prev   Next  

Passively stabilized single-photon interferometer

Hai-Long Liu(刘海龙)1,2, Min-Jie Wang(王敏杰)1,2, Jia-Xin Bao(暴佳鑫)1,2, Chao Liu(刘超)1,2, Ya Li(李雅)1,2, Shu-Jing Li(李淑静)1,2, and Hai Wang(王海)1,2,†
1 The State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  A single-photon interferometer is a fundamental element in quantum information science. In most previously reported works, single-photon interferometers use an active feedback locking system to stabilize the relative phase between two arms of the interferometer. Here, we use a pair of beam displacers to construct a passively stable single-photon interferometer. The relative phase stabilization between the two arms is achieved by stabilizing the temperature of the beam displacers. A purely polarized single-photon-level pulse is directed into the interferometer input port. By analyzing and measuring the polarization states of the single-photon pulse at the output port, the achieved polarization fidelity of the interferometer is about 99.1 ±0.1%. Our passively stabilized single-photon interferometer provides a key element for generating high-fidelity entanglement between a photon and atomic memory.
Keywords:  passively stable      single-photon interferometer      atom-photon entanglement      polarization fidelity  
Received:  09 December 2021      Revised:  01 February 2022      Accepted manuscript online:  02 March 2022
PACS:  03.67.-a (Quantum information)  
  03.67.Bg (Entanglement production and manipulation)  
  85.35.Ds (Quantum interference devices)  
Fund: Project supported by the Ministry of Science and Technology of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant No. 12174235), and Shanxi “1331 Project” Key Subjects Construction.
Corresponding Authors:  Hai Wang     E-mail:  wanghai@sxu.edu.cn

Cite this article: 

Hai-Long Liu(刘海龙), Min-Jie Wang(王敏杰), Jia-Xin Bao(暴佳鑫), Chao Liu(刘超), Ya Li(李雅), Shu-Jing Li(李淑静), and Hai Wang(王海) Passively stabilized single-photon interferometer 2022 Chin. Phys. B 31 110306

[1] Gisin N, Ribordy G G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[2] Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J and Pan J W 2007 Phys. Rev. Lett. 99 180505
[3] Dudin Y O, Radnaev A G, Zhao R, Blumoff J Z, Kennedy T A and Kuzmich A 2010 Phys. Rev. Lett. 105 260502
[4] Wang S Z, Wang M J, Wen Y F, Xu Z X, Ma T F, Li S J and Wang H 2021 Commun. Phys. 4 168
[5] Zhang W, Ding D S, Dong M X, Shi S, Wang K, Liu S L, Li Y, Zhou Z Y, Shi B S and Guo G C 2016 Nat. Commun. 7 13514
[6] Yu Y C, Ding D S, Dong M X, Shi S, Zhang W and Shi B S 2018 Phys. Rev. A 97 043809
[7] Wang S Z, Wen Y F, Zhang C R, Wang D X, Xu Z X, Li S J and Wang H 2019 Acta Phys. Sin. 68 020301 (in Chinese)
[8] Sangouard N, Simon C, Miná? J, Zbinden H, de Riedmatten H and Gisin N 2007 Phys. Rev. A 76 050301
[9] Tanji H, Ghosh S, Simon J, Bloom B and Vuletic V 2009 Phys. Rev. Lett. 103 043601
[10] Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S and Rempe G 2011 Nature 473 190
[11] Gundogan M, Ledingham P M, Almasi A, Cristiani M and de Riedmatten H 2012 Phys. Rev. Lett. 108 190504
[12] Zhou Z Q, Lin W B, Yang M, Li C F and Guo G C 2012 Phys. Rev. Lett. 108 190505
[13] England D G, Michelberger P S, Champion T F M, Reim K F, Lee K C, Sprague M R, Jin X M, Langford N K, Kolthammer W S, Nunn J and Walmsley I A 2012 J. Phys. B: At. Mol. Opt. Phys. 45 124008
[14] An Z Y, Wang X J, Yuan Z S, Bao X H and Pan J W 2018 Acta Phys. Sin. 67 224203 (in Chinese)
[15] Shi B S, Ding D S, Zhang W and Li E Z 2019 Acta Phys. Sin. 68 034203 (in Chinese)
[16] Dou J P, Li H, Pang X L, Zhang C N, Yang T H and Jin X M 2019 Acta Phys. Sin. 68 030307 (in Chinese)
[17] Zhang K, Wang W, Liu S S, Pan X Z, Du J J, Lou Y B, Yu S, Lv S C, Treps N, Fabre C and Jing J T 2020 Phys. Rev. Lett. 124 090501
[18] Li S J, Pan X Z, Ren Y, Liu H Z, Yu S and Jing J T 2020 Phys. Rev. Lett. 124 083605
[19] Liu X, Hu J, Li Z F, Li X, Li P Y, Liang P J, Zhou Z Q, Li C F and Guo G C 2021 Nature 594 41
[20] Liu S S, Lou Y B and Jing J T 2020 Nat. Commun. 11 3875
[21] Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J and Ward H 1983 Appl. Phys. B 31 97
[22] Black E D 2001 Am. J. Phys. 69 79
[23] Lvovsky A I, Sanders B C and Tittel W 2009 Nat. Photon. 3 706
[24] Simon C, Afzelius M, Appel J, et al. 2010 Eur. Phys. J. D 58 1
[25] Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S and Guo G C 2015 Nat. Photon. 9 332
[26] Liu F, Zhou Y Y, Yu J, Guo J L, Wu Y, Xiao S X, Wei D, Zhang Y, Jia X J and Xiao M 2017 Appl. Phys. Lett. 110 021106
[27] Feng X T, Yuan C H, Chen L Q, Chen J F, Zhang K Y and Zhang W P 2018 Acta Phys. Sin. 67 164204 (in Chinese)
[28] Wu S H, Huang W F, Yang P Y, Liu S Q and Chen L Q 2019 Opt. Commun. 442 148
[29] Wang X J, Yang S J, Sun P F, Jing B, Li J, Zhou M T, Bao X H and Pan J W 2021 Phys. Rev. Lett. 126 090501
[30] Yang S J, Wang X J, Li J, Rui J, Bao X H and Pan J W 2015 Phys. Rev. Lett. 114 210501
[31] Heller L, Farrera P, Heinze G and de Riedmatten H 2020 Phys. Rev. Lett. 124 210504
[32] Liu J L, Shi R H, Shi J J, Lv G L and Guo Y 2016 Chin. Phys. B 25 080306
[33] Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S and Peng K C 2017 Chin. Phys. B 26 040303
[34] Gong B, Tu T, Guo A L, Zhu L T and Li C F 2021 Chin. Phys. Lett. 38 044201
[35] Zhao J J, Guo X M, Wang X Y, Wang N, Li Y M and Peng K C 2013 Chin. Phys. Lett. 30 060302
[36] Gobby C, Yuan Z L and Shields A J 2004 Appl. Phys. Lett. 84 3762
[37] Fernandez V, Collins R J, Gordon K J, Townsend P D and Buller G S 2007 IEEE J. Quantum Electron. 43 130
[38] Richard J 1994 J. Mod. Opt. 41 2315
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Performance analysis of quantum key distribution using polarized coherent-states in free-space channel
Zengte Zheng(郑增特), Ziyang Chen(陈子扬), Luyu Huang(黄露雨),Xiangyu Wang(王翔宇), and Song Yu(喻松). Chin. Phys. B, 2023, 32(3): 030306.
[3] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[4] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[5] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[6] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[7] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[8] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[9] Tolerance-enhanced SU(1,1) interferometers using asymmetric gain
Jian-Dong Zhang(张建东) and Shuai Wang(王帅). Chin. Phys. B, 2023, 32(1): 010306.
[10] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[11] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[12] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[13] Experimental demonstration of a fast calibration method for integrated photonic circuits with cascaded phase shifters
Junqin Cao(曹君勤), Zhixin Chen(陈志歆), Yaxin Wang(王亚新), Tianfeng Feng(冯田峰), Zhihao Li(李志浩), Zeyu Xing(邢泽宇), Huashan Li(李华山), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2022, 31(11): 114204.
[14] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[15] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
No Suggested Reading articles found!