Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(10): 104702    DOI: 10.1088/1674-1056/ac754d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Active thermophoresis and diffusiophoresis

Huan Liang(梁欢)1,2, Peng Liu(刘鹏)1,2,3, Fangfu Ye(叶方富)1,2,3,4,†, and Mingcheng Yang(杨明成)1,2,4,‡
1. Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China;
2. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3. Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China;
4. Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Thermophoresis and diffusiophoresis respectively refer to the directed drift of suspended particles in solutions with external thermal and chemical gradients, which have been widely used in the manipulation of mesoscopic particles. We here study a phoretic-like motion of a passive colloidal particle immersed in inhomogeneous active baths, where the thermal and chemical gradients are replaced separately by activity and concentration gradients of the active particles. By performing simulations, we show that the passive colloidal particle experiences phoretic-like forces that originate from its interactions with the inhomogeneous active fluid, and thus drifts along the gradient field, leading to an accumulation. The results are similar to the traditional phoretic effects occurring in passive colloidal suspensions, implying that the concepts of thermophoresis and diffusiophoresis could be generalized into active baths.
Keywords:  active matter      colloid      thermophoresis      diffusiophoresis  
Received:  12 May 2022      Revised:  25 May 2022      Accepted manuscript online: 
PACS:  47.57.-s (Complex fluids and colloidal systems)  
  87.16.Uv (Active transport processes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874397) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33000000).
Corresponding Authors:  Fangfu Ye, Mingcheng Yang     E-mail:  fye@iphy.ac.cn;mcyang@iphy.ac.cn

Cite this article: 

Huan Liang(梁欢), Peng Liu(刘鹏), Fangfu Ye(叶方富), and Mingcheng Yang(杨明成) Active thermophoresis and diffusiophoresis 2022 Chin. Phys. B 31 104702

[1] Ramaswamy S 2010 Ann. Rev. Condens. Matter Phys. 1 323
[2] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006
[3] Elgeti J, Winkler R G and Gompper G 2015 Rep. Prog. Phys. 78 056601
[4] Vicsek T and Zafeiris A 2012 Phys. Rep. 517 71
[5] Dunkel J, Heidenreich S, Drescher K, Wensink H H, Bär M and Goldstein R E 2013 Phys. Rev. Lett. 110 228102
[6] Deblais A, Barois T, Guerin T, Delville P H, Vaudaine R, Lintuvuori J S, Boudet J F, Baret J C and Kellay H 2018 Phys. Rev. Lett. 120 188002
[7] Liu P, Zhu H, Zeng Y, Du G, Ning L, Wang D, Chen K, Lu Y, Zheng N, Ye F and Yang M 2020 Proc. Nat. Acad. Sci. 117 11901
[8] Yang Q, Liang H, Liu R, Chen K, Ye F and Yang M 2021 Chin. Phys. Lett. 38 128701
[9] Wu C, Dai J, Li X, Gao L, Wang J, Liu J, Zheng J, Zhan X, Chen J, Cheng X, et al. 2021 Nat. Nanotechnol. 16 288
[10] Cates M E and Tailleur J 2015 Ann. Rev. Condens. Matter Phys. 6 219
[11] Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C and Speck T 2013 Phys. Rev. Lett. 110 238301
[12] Saintillan D 2018 Ann. Rev. Fluid Mech. 50 563
[13] Solon A P, Fily Y, Baskaran A, Cates M E, Kafri Y, Kardar M and Tailleur J 2015 Nat. Phys. 11 673
[14] Mandal S, Liebchen B and Löwen H 2019 Phys. Rev. Lett. 123 228001
[15] Ye S, Liu P, Wei Z, Ye F, Yang M and Chen K 2020 Chin. Phys. B 29 058201
[16] Takatori S C, Yan W and Brady J F 2014 Phys. Rev. Lett. 113 028103
[17] Solon A P, Stenhammar J, Wittkowski R, Kardar M, Kafri Y, Cates M E and Tailleur J 2015 Phys. Rev. Lett. 114 198301
[18] Koenderink G, Vliegenthart G, Kluijtmans S, Van Blaaderen A, Philipse A and Lekkerkerker H 1999 Langmuir 15 4693
[19] Ni R, Stuart M A C and Bolhuis P G 2015 Phys. Rev. Lett. 114 018302
[20] Krafnick R C and García A E 2015 Phys. Rev. E 91 022308
[21] Harder J, Mallory S, Tung C, Valeriani C and Cacciuto A 2014 The Journal of Chemical Physics 141 194901
[22] Zaeifi Yamchi M and Naji A 2017 J. Chem. Phys. 147 194901
[23] Liu P, Ye S, Ye F, Chen K and Yang M 2020 Phys. Rev. Lett. 124 158001
[24] Enculescu M and Stark H 2011 Phys. Rev. Lett. 107 058301
[25] Solon A P, Cates M E and Tailleur J 2015 Eur. Phys. J. Special Topics 224 1231
[26] Ye S, Liu P, Ye F, Chen K and Yang M 2020 Soft Matter 16 4655
[27] Anderson J L 1989 Ann. Rev. Fluid Mech. 21 61
[28] Piazza R and Parola A 2008 J. Phys.: Condens. Matter 20 153102
[29] Würger A 2010 Rep. Prog. Phys. 73 126601
[30] Velegol D, Garg A, Guha R, Kar A and Kumar M 2016 Soft Matter 12 4686
[31] Abécassis B, Cottin-Bizonne C, Ybert C, Ajdari A and Bocquet L 2008 Nat. Mater. 7 785
[32] Hill R J, Saville D and Russel W 2003 Journal of Colloid and Interface Science 258 56
[33] Braun M, Würger A and Cichos F 2014 Phys. Chem. Chem. Phys. 16 15207
[34] Lin L, Zhang J, Peng X, Wu Z, Coughlan A C, Mao Z, Bevan M A and Zheng Y 2017 Sci. Adv. 3 e1700458
[35] Yang M, Liu R, Ripoll M and Chen K 2014 Nanoscale 6 13550
[36] Golestanian R, Liverpool T and Ajdari A 2007 New J. Phys. 9 126
[37] Ebbens S J and Howse J R 2010 Soft Matter 6 726
[38] Nourhani A and Lammert P E 2016 Phys. Rev. Lett. 116 178302
[39] Wang J 2012 Lab on a Chip 12 1944
[40] Golestanian R, Liverpool T B and Ajdari A 2005 Phys. Rev. Lett. 94 220801
[41] Jiang H R, Yoshinaga N and Sano M 2010 Phys. Rev. Lett. 105 268302
[42] Lou X, Yu N, Chen K, Zhou X, Podgornik R and Yang M 2021 Chin. Phys. B 30 114702
[43] Brady J F 2021 J. Fluid Mech. 922 A10
[44] Razin N, Voituriez R, Elgeti J and Gov N S 2017 Phys. Rev. E 96 032606
[45] Razin N, Voituriez R, Elgeti J and Gov N S 2017 Phys. Rev. E 96 052409
[46] Merlitz H, Wu C and Sommer J U 2017 Soft Matter 13 3726
[47] Almonacid M, Ahmed W W, Bussonnier M, Mailly P, Betz T, Voituriez R, Gov N S and Verlhac M H 2015 Nature Cell Biology 17 470
[48] Chen J X, Chen Y G and Ma Y Q 2016 Soft Matter 12 1876
[49] Shen M, Ye F, Liu R, Chen K, Yang M and Ripoll M 2016 J. Chem. Phys. 145 124119
[50] Tailleur J and Cates M 2008 Phys. Rev. Lett. 100 218103
[51] Stenhammar J, Wittkowski R, Marenduzzo D and Cates M E 2016 Sci. Adv. 2 e1501850
[52] Yu N, Lou X, Chen K and Yang M 2019 Soft Matter 15 408
[53] Weinert F M and Braun D 2008 Phys. Rev. Lett. 101 168301
[54] Yang M and Ripoll M 2013 Soft Matter 9 4661
[55] Rohwer C M, Kardar M and Krüger M 2020 J. Chem. Phys. 152 084109
[56] Jiang C, Li B, Dou S X, Wang P Y and Li H 2020 Chin. Phys. Lett. 37 078701
[57] Chen X 2020 Chin. Phys. Lett. 37 80103
[1] Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu(顾张彧), Yisong Fan(范一松), Yixing Ye(叶一星), Yunyu Cai(蔡云雨), Jun Liu(刘俊), Shouliang Wu(吴守良), Pengfei Li(李鹏飞), Junhua Hu(胡俊华), Changhao Liang(梁长浩), and Yao Ma(马垚). Chin. Phys. B, 2022, 31(7): 078102.
[2] Solid-liquid transition induced by the anisotropic diffusion of colloidal particles
Fu-Jun Lin(蔺福军), Jing-Jing Liao(廖晶晶), Jian-Chun Wu(吴建春), and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(3): 036401.
[3] Graph dynamical networks for forecasting collective behavior of active matter
Yanjun Liu(刘彦君), Rui Wang(王瑞), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2022, 31(11): 116401.
[4] Phoretic self-assembly of active colloidal molecules
Lijie Lei(雷李杰), Shuo Wang(王硕), Xinyuan Zhang(张昕源), Wenjie Lai(赖文杰), Jinyu Wu(吴晋宇), and Yongxiang Gao(高永祥). Chin. Phys. B, 2021, 30(5): 056112.
[5] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[6] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[7] Tuning energy transfer efficiency in quantum dots mixture by controling donor/acceptor ratio
Chang Liu(刘畅), Jing Liang(梁晶), Fangfang Wang(王芳芳), Chaojie Ma(马超杰), Kehai Liu(刘科海), Can Liu(刘灿), Hao Hong(洪浩), Huaibin Shen(申怀彬), Kaihui Liu(刘开辉), and Enge Wang(王恩哥). Chin. Phys. B, 2021, 30(12): 127802.
[8] Phase behavior of rotationally asymmetric Brownian kites containing 90° internal angles
Huaqing Liu(柳华清), Yiwu Zong(宗奕吾), Zhanglin Hou(侯章林), Thomas G. Mason, and Kun Zhao(赵坤). Chin. Phys. B, 2021, 30(12): 124701.
[9] Simulation of microswimmer hydrodynamics with multiparticle collision dynamics
Andreas Z?ttl. Chin. Phys. B, 2020, 29(7): 074701.
[10] Symmetry properties of fluctuations in an actively driven rotor
He Li(李赫), Xiang Yang(杨翔), Hepeng Zhang(张何朋). Chin. Phys. B, 2020, 29(6): 060502.
[11] Self-assembled vesicle-colloid hybrid swimmers: Non-reciprocal strokes with reciprocal actuation
Jaime Agudo-Canalejo, Babak Nasouri. Chin. Phys. B, 2020, 29(6): 064704.
[12] Non-Stokes drag coefficient in single-particle electrophoresis:New insights on a classical problem
Mai-Jia Liao(廖麦嘉), Ming-Tzo Wei(魏名佐), Shi-Xin Xu(徐士鑫), H Daniel Ou-Yang(歐陽新喬), Ping Sheng(沈平). Chin. Phys. B, 2019, 28(8): 084701.
[13] Magnetotransport properties of graphene layers decorated with colloid quantum dots
Ri-Jia Zhu(朱日佳), Yu-Qing Huang(黄雨青), Jia-Yu Li(李佳玉), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(6): 067201.
[14] Fluorescence spectra of colloidal self-assembled CdSe nano-wire on substrate of porous Al2O3/Au nanoparticles
Xin Zhang(张欣), Li-Ping Shao(邵丽萍), Man Peng(彭嫚), Zhong-Chen Bai(白忠臣), Zheng-Ping Zhang(张正平), Shui-Jie Qin(秦水介). Chin. Phys. B, 2019, 28(6): 068103.
[15] Relationship between characteristic lengths and effective Saffman length in colloidal monolayers near a water-oil interface
Na Li(李娜), Wei Zhang(张伟), Wei Chen(陈唯). Chin. Phys. B, 2019, 28(6): 064703.
No Suggested Reading articles found!