1. Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2. State Key Laboratory of Laser Propulsion & Application, Department of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China
Abstract Laser-induced breakdown spectroscopy (LIBS) is a good technique for detecting and analyzing material elements due to the plasma emission produced by the high-power laser pulse. Currently, a significant topic of LIBS research is improving the emission intensity of LIBS. This study investigated the effect of laser-polarization on femtosecond laser-ablated Cu plasma spectra at different sample temperatures. The measured lines under circularly polarized lasers were higher than those under linearly and elliptically polarized lasers. The enhancement effect was evident at higher Cu temperatures when comparing the plasma spectra that have circular and linear polarizations for different target temperatures. To understand the influence of laser-polarization and sample temperature on signal intensity, we calculated the plasma temperature (PT) and electron density (ED) . The change in PT and ED was consistent with the change in the atomic lines as the laser polarization was being adjusted. When raising the Cu temperature, the PT increased while the ED decreased. Raising the Cu temperature whilst adjusting the laser-polarization is effective for improving the signal of femtosecond LIBS compared to raising the initial sample temperature alone or only changing the laser polarization.
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307701) and the National Natural Science Foundation of China (Grant Nos. 11974138, 11674128, and 11674124).
Corresponding Authors:
Anmin Chen, Jianhui Han, Mingxing Jin
E-mail: amchen@jlu.edu.cn;hanjh17@mails.jlu.edu.cn;mxjin@jlu.edu.cn
Cite this article:
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星) Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures 2022 Chin. Phys. B 31 105201
[1] Wang Q Q, Liu K, Zhao H, Ge C H and Huang Z W 2012 Front. Phys.7 701 [2] Wang Y, Chen A, Li S, Sui L, Liu D, Tian D, Jiang Y and Jin M 2016 J. Anal. Atom. Spectrom.31 497 [3] Wang X, Song X, Gao X and Lin J 2020 Opt. Commun.456 124603 [4] Finney L A, Lin J, Skrodzki P J, Burger M, Nees J, Krushelnick K and Jovanovic I 2021 Opt. Commun.490 126902 [5] Yang H X, Fu H B, Wang H D, Jia J W, Sigrist M W and Dong F Z 2016 Chin. Phys. B25 065201 [6] Nakimana A, Tao H Y, Hao Z Q, Sun C K, Gao X and Lin J Q 2013 Chin. Phys. B22 014209 [7] Liu J, Tao H Y, Gao X, Hao Z Q and Lin J Q 2013 Chin. Phys. B22 044206 [8] Dong P K, Zhao S Y, Zheng K X, Wang J, Gao X, Hao Z Q and Lin J Q 2021 Acta Phys. Sin.70 040201 (in Chinese) [9] Zheng P C, Li X J, Wang J M, Zheng S and Zhao H D 2019 Acta Phys. Sin.68 125202 (in Chinese) [10] Guo L B, Zhang B Y, He X N, Li C M, Zhou Y S, Wu T, Park J B, Zeng X Y and Lu Y F 2012 Opt. Exp.20 1436 [11] Chen A, Wang Y, Sui L, Li S, Li S, Liu D, Jiang Y and Jin M 2015 Opt. Exp.23 24648 [12] Zhang D, Chen A, Wang X, Li S, Wang Y, Sui L, Jiang Y and Jin M 2017 Opt. Laser Technol.96 117 [13] Li X, Wang Z, Mao X and Russo R E 2014 J. Anal. Atom. Spectrom.29 2127 [14] Li K, Zhou W, Shen Q, Ren Z and Peng B 2010 J. Anal. Atom. Spectrom.25 1475 [15] Hou Z, Wang Z, Liu J, Ni W and Li Z 2014 Opt. Exp.22 12909 [16] He X, Chen B, Chen Y, Li R and Wang F 2018 J. Anal. Atom. Spectrom.33 2203 [17] Li C, Hao Z, Zou Z, Zhou R, Li J, Guo L, Li X, Lu Y and Zeng X 2016 Opt. Exp.24 7850 [18] Goueguel C, Laville S, Vidal F, Sabsabi M and Chaker M 2010 J. Anal. Atom. Spectrom.25 635 [19] Wang X Z, Hao Z Q, Guo L B, Li X Y, Lu Y F and Zeng X Y 2015 Spectroscopy & Spectral Analysis 35 1159 [20] Wang Y, Wang Q, Chen A and Jin M 2021 Optik230 166338 [21] Lednev V N, Grishin M Y, Sdvizhenskii P A, Asyutin R D, Tretyakov R S, Stavertiy A Y and Pershin S M 2019 J. Anal. Atom. Spectrom.34 607 [22] Darbani S M R, Ghezelbash M, Majd A E, Soltanolkotabi M and Saghafifar H 2014 J. Eur. Opt. Soc.9 14058 [23] Tavassoli S H and Gragossian A 2009 Opt. Laser Technol.41 481 [24] Liu Y, Tong Y, Li S, Wang Y, Chen A and Jin M 2016 Chin. Opt. Lett.14 123001 [25] Wang Q, Chen A, Qi H, Li S, Jiang Y and Jin M 2020 Opt. Laser Technol.121 105773 [26] Chen H, Li H, Sun Y C, Wang Y and Lü P J 2016 Sci. Rep.6 20950 [27] Chen A, Sui L, Shi Y, Jiang Y, Yang D, Liu H, Jin M and Ding D 2013 Thin Solid Films529 209 [28] Mirza I, Bulgakova N M, Tomáštík J, Michálek V, Haderka O, Fekete L and Mocek T 2016 Sci. Rep.6 39133 [29] Han Z H, Zhou C H, Dai E W and Xie J 2008 Opt. Commun.281 4723 [30] Yao S, Zhang J, Gao X, Zhao S and Lin J 2018 Opt. Commun.425 152 [31] Wang Y, Chen A, Jiang Y, Sui L, Wang X, Zhang D, Tian D, Li S and Jin M 2017 Phys. Plasmas24 013301 [32] Wang Q, Chen A, Xu W, Li S, Jiang Y and Jin M 2019 J. Anal. Atom. Spectrom.34 1242 [33] Lemos N, Grismayer T, Cardoso L, Geada J, Figueira G and Dias J M 2013 Phys. Plasmas20 103109 [34] Mitryukovskiy S, Liu Y, Ding P, Houard A, Couairon A and Mysyrowicz A 2015 Phys. Rev. Lett.114 063003 [35] Corkum P B, Burnett N H and Brunel F 1989 Phys. Rev. Lett.62 1259 [36] Mohideen U, Sher M H, Tom H W K, Aumiller G D, Wood O R, Freeman R R, Boker J and Bucksbaum P H 1993 Phys. Rev. Lett.71 509 [37] Guo J, Wang T, Shao J, Chen A and Jin M 2018 J. Anal. Atom. Spectrom.33 2116 [38] Thorstensen J and Erik Foss S 2012 J. Appl. Phys.112 103514 [39] Yang L, Liu M, Liu Y T, Li Q X, Li S Y, Jiang Y F, Chen A M and Jin M X 2020 Chin. Phys. B29 065203 [40] Wang Q, Chen A, Wang Y, Sui L, Li S and Jin M 2018 J. Anal. Atom. Spectrom.33 1154 [41] Chen A, Jiang Y, Wang T, Shao J and Jin M 2015 Phys. Plasmas22 033301 [42] Yang X, Li S, Jiang Y, Chen A and Jin M 2019 Acta Phys. Sin.68 065201 (in Chinese) [43] Yang D P, Li S Y, Jiang Y F, Chen A M and Jin M X 2017 Acta Phys. Sin.66 115201 (in Chinese) [44] Wang Y, Chen A, Zhang D, Wang Q, Li S, Jiang Y and Jin M 2020 Phys. Plasmas27 023507 [45] Xu W, Chen A, Wang Q, Zhang D, Wang Y, Li S, Jiang Y and Jin M 2019 J. Anal. Atom. Spectrom.34 1018 [46] Wang Y, Chen A, Wang Q, Sui L, Ke D, Cao S, Li S, Jiang Y and Jin M 2018 Phys. Plasmas25 033302 [47] Shao J, Guo J, Wang Q, Chen A and Jin M 2020 Plasma Sci. Technol.22 074001 [48] Shakeel H, Arshad S, Haq S U and Nadeem A 2016 Phys. Plasmas23 053504 [49] Konjević N and Wiese W L 1990 J. Phys. Chem. Ref. Data19 1307 [50] Qi H, Li S, Qi Y, Chen A, Hu Z, Huang X, Jin M and Ding D 2014 J. Anal. Atom. Spectrom.29 1105 [51] Thorstensen J and Foss S E 2012 J. Appl. Phys.112 103514 [52] Ujihara K 1972 J. Appl. Phys.43 2376 [53] Eschlböck-Fuchs S, Haslinger M J, Hinterreiter A, Kolmhofer P, Huber N, Rössler R, Heitz J and Pedarnig J D 2013 Spectrochimica Acta Part B: Atomic Spectroscopy87 36 [54] Sambri A, Amoruso S, Wang X, Radovic' M, Miletto Granozio F and Bruzzese R 2007 Appl. Phys. Lett.91 151501 [55] Zhang D, Chen A, Wang Q, Wang Y, Qi H, Li S, Jiang Y and Jin M 2018 Phys. Plasmas25 083305
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.