CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Tuning energy transfer efficiency in quantum dots mixture by controling donor/acceptor ratio |
Chang Liu(刘畅)1,†, Jing Liang(梁晶)2,†, Fangfang Wang(王芳芳)3,†, Chaojie Ma(马超杰)2, Kehai Liu(刘科海)4, Can Liu(刘灿)2, Hao Hong(洪浩)2,¶, Huaibin Shen(申怀彬)3,§, Kaihui Liu(刘开辉)1,2,‡, and Enge Wang(王恩哥)1,4 |
International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China; 2 State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China; 3 Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials and Engineering, Henan University, Kaifeng 475001, China; 4 Songshan Lake Materials Laboratory, Institute of Physics, Chinese Academy of Sciences, Dongguan 523000, China |
|
|
Abstract Improving the emission performance of colloidal quantum dots (QDs) is of paramount importance for their applications on light-emitting diodes (LEDs), displays and lasers. A highly promising approach is to tune the carrier recombination channels and lifetime by exploiting the energy transfer process. However, to achieve this precise emission optimization, quantitative modulation on energy transfer efficiency is highly desirable but still challenging. Here, we demonstrate a convenient approach to realize tunable energy transfer efficiency by forming QDs mixture with controllable donor/acceptor (D/A) ratio. With the mixing ratio ranging from 16/1 to 1/16, the energy transfer efficiency could be effectively tuned from near zero to ~70%. For the high mixing ratio of 16/1, acceptors obtain adequate energy supplied by closely surrounding donors, leading to~2.4-fold PL enhancement. While for the low mixing ratio, the ultrafast and efficient energy extraction process directly suppresses the multi-exciton and Auger recombination in the donor, bringing about a higher threshold. The facile modulation of emission performance by controllably designed mixing ratio and quantitatively tunable energy transfer efficiency will facilitate QD-based optoelectronic and photovoltaic applications.
|
Received: 15 August 2021
Revised: 10 September 2021
Accepted manuscript online: 24 September 2021
|
PACS:
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.67.Hc
|
(Quantum dots)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52025023, 51991342, 52021006, 11888101, and 61922028), the Key R&D Program of Guangdong Province, China (Grant Nos. 2020B010189001, 2019B010931001, and 2018B030327001), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), Beijing Natural Science Foundation, China (Grant No. JQ19004), the Pearl River Talent Recruitment Program of Guangdong Province, China (Grant No. 2019ZT08C321), and China Postdoctoral Science Foundation (Grant No. 2021T140022). |
Corresponding Authors:
Hao Hong, Huaibin Shen, Kaihui Liu
E-mail: khliu@pku.edu.cn;shenhuaibin@henu.edu.cn;haohong@pku.edu.cn
|
Cite this article:
Chang Liu(刘畅), Jing Liang(梁晶), Fangfang Wang(王芳芳), Chaojie Ma(马超杰), Kehai Liu(刘科海), Can Liu(刘灿), Hao Hong(洪浩), Huaibin Shen(申怀彬), Kaihui Liu(刘开辉), and Enge Wang(王恩哥) Tuning energy transfer efficiency in quantum dots mixture by controling donor/acceptor ratio 2021 Chin. Phys. B 30 127802
|
[1] Murray C B, Kagan C R and Bawendi M G 2000 Ann. Rev. Mater. Sci. 30 545 [2] Talapin D V, Lee J S, Kovalenko M V and Shevchenko E V 2010 Chem. Rev. 110 389 [3] Yang J, Choi M K, Kim D H and Hyeon T 2016 Adv. Mater. 28 1176 [4] Dai X L, Zhang Z X, Jin Y Z, Niu Y, Cao H J, Liang X Y, Chen L W, Wang J P and Peng X G 2014 Nature 515 96 [5] Fan F J, Wu L and Yu S H 2014 Energ Environ Sci. 7 190 [6] Kagan C R, Lifshitz E, Sargent E H and Talapin D V 2016 Science 353 aac5523 [7] Siboni H Z, Sadeghimakki B, Sivoththaman S and Aziz H 2015 Acs Appl. Mater. Inter 7 25828 [8] Sun Q, Wang Y A, Li L S, Wang D Y, Zhu T, Xu J, Yang C H and Li Y F 2007 Nat. Photon. 1 717 [9] Litvin A P, Martynenko I V, Purcell-Milton F, Baranov A V, Fedorov A V and Gun'ko Y K 2017 J. Mater. Chem. A 5 13252 [10] Mashford B S, Stevenson M, Popovic Z, Hamilton C, Zhou Z Q, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S and Kazlas P T 2013 Nat. Photon. 7 407 [11] Shen H B, Cao W R, Shewmon N T, Yang C C, Li L S and Xue J G 2015 Nano Lett. 15 1211 [12] Coe S, Woo W K, Bawendi M and Bulovic V 2002 Nature 420 800 [13] Mattoussi H, Radzilowski L H, Dabbousi B O, Thomas E L, Bawendi M G and Rubner M F 1998 J. Appl. Phys. 83 7965 [14] Schlamp M C, Peng X G and Alivisatos A P 1997 J. Appl. Phys. 82 5837 [15] Cho K S, Lee E K, Joo W J, Jang E, Kim T H, Lee S J, Kwon S J, Han J Y, Kim B K, Choi B L and Kim J M 2009 Nat. Photon. 3 341 [16] Yang Y X, Zheng Y, Cao W R, Titov A, Hyvonen J, Manders J R, Xue J G, Holloway P H and Qian L 2015 Nat. Photon. 9 259 [17] Bae W K, Lim J, Lee D, Park M, Lee H, Kwak J, Char K, Lee C and Lee S 2014 Adv. Mater. 26 6387 [18] Lee K H, Han C Y, Kang H D, Ko H, Lee C, Lee J, Myoung N, Yim S Y and Yang H 2015 Acs Nano 9 10941 [19] Bae W K, Kwak J, Lim J, Lee D, Nam M K, Char K, Lee C and Lee S 2010 Nano Lett. 10 2368 [20] Jiang C B, Zou J H, Liu Y, Song C, He Z W, Zhong Z J, Wang J, Yip H L, Peng J B and Cao Y 2018 Acs Nano 12 6040 [21] Zhang H, Su Q, Sun Y Z and Chen S M 2018 Adv. Opt. Mater. 6 1800354 [22] Förster T 1948 Ann. Phys.-Berlin 2 55 [23] Lakowicz J R 2013 Principles of Fluorescence Spectroscopy [24] Chou K F and Dennis A M 2015 Sensors-Basel 15 13288 [25] Clapp A R, Medintz I L and Mattoussi H 2006 Chemphyschem 7 47 [26] Kholmicheva N, Moroz P, Eckard H, Jensen G and Zamkov M 2017 Acs Energy Lett. 2 154 [27] Kozawa D, Carvalho A, Verzhbitskiy I, Giustiniano F, Miyauchi Y, Mouri S, Neto A H C, Matsuda K and Eda G 2016 Nano Lett. 16 4087 [28] Achermann M, Petruska M A, Crooker S A and Klimov V I 2003 J. Phys. Chem. B 107 13782 [29] Becker K, Lupton J M, Muller J, Rogach A L, Talapin D V, Weller H and Feldmann J 2006 Nat. Mater. 5 777 [30] Borys N J, Walter M J, Huang J, Talapin D V and Lupton J M 2010 Science 330 1371 [31] Chen C W, Wang C H, Chen Y F, Lai C W and Chou P T 2008 Appl. Phys. Lett. 92 051906 [32] Chen Z Y, Berciaud S, Nuckolls C, Heinz T F and Brus L E 2010 Acs Nano 4 2964 [33] Crooker S A, Hollingsworth J A, Tretiak S and Klimov V I 2002 Phys. Rev. Lett. 89 186802 [34] Hua Z, Xu Q F, Huang X N, Zhang C F, Wang X Y and Xiao M 2014 Acs Nano 8 7060 [35] Wang C H, Chen C W, Wei C M, Chen Y F, Lai C W, Ho M L and Chou P T 2009 J. Phys. Chem. C 113 15548 [36] Yu J H, Sharma M, Sharma A, Delikanli S, Demir H V and Dang C 2020 Light-Sci. Appl 9 27 [37] Zhang Q, Atay T, Tischler J R, Bradley M S, Bulovic V and Nurmikko A V 2007 Nat. Nanotechnol. 2 555 [38] Zhu H M, Yang Y, Wu K F and Lian T Q 2016 Ann. Rev. Phys. Chem. 67 259 [39] Shen H B, Wang H Z, Tang Z J, Niu J Z, Lou S Y, Du Z L and Li L S 2009 Crystengcomm 11 1733 [40] Medintz I L, Clapp A R, Mattoussi H, Goldman E R, Fisher B and Mauro J M 2003 Nat. Mater. 2 630 [41] Clapp A R, Medintz I L, Mauro J M, Fisher B R, Bawendi M G and Mattoussi H 2004 J. Am. Chem. Soc. 126 301 [42] Bockelmann U and Egeler T 1992 Phys. Rev. B 46 15574 [43] Klimov V I, Mikhailovsky A A, McBranch D W, Leatherdale C A and Bawendi M G 2000 Science 287 1011 [44] Robel I, Gresback R, Kortshagen U, Schaller R D and Klimov V I 2009 Phys. Rev. Lett. 102 177404 [45] Cragg G E and Efros A L 2010 Nano Lett. 10 313 [46] Bae W K, Park Y S, Lim J, Lee D, Padilha L A, McDaniel H, Robel I, Lee C, Pietryga J M and Klimov V I 2013 Nat. Commun. 4 2661 [47] Efros A L and Rosen M 1997 Phys. Rev. Lett. 78 1110 [48] Galland C, Ghosh Y, Steinbruck A, Sykora M, Hollingsworth J A, Klimov V I and Htoon H 2011 Nature 479 203 [49] Galland C, Ghosh Y, Steinbruck A, Hollingsworth J A, Htoon H and Klimov V I 2012 Nat. Commun. 3 908 [50] Rogez B, Yan H, Le Moal E, Leveque-Fort S, Boer-Duchemin E, Yao F, Lee Y H, Zhang Y, Wegner K D, Hildebrandt N, Mayne A and Dujardin G 2014 J. Phys. Chem. C 118 18445 [51] Ito Y, Matsuda K and Kanemitsu Y 2007 Phys. Rev. B 75 033309 [52] Ito Y, Matsuda K and Kanemitsu Y 2009 Phys. Status Solidi C 6 221 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|