ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Active thermophoresis and diffusiophoresis |
Huan Liang(梁欢)1,2, Peng Liu(刘鹏)1,2,3, Fangfu Ye(叶方富)1,2,3,4,†, and Mingcheng Yang(杨明成)1,2,4,‡ |
1. Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China; 2. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3. Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China; 4. Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Thermophoresis and diffusiophoresis respectively refer to the directed drift of suspended particles in solutions with external thermal and chemical gradients, which have been widely used in the manipulation of mesoscopic particles. We here study a phoretic-like motion of a passive colloidal particle immersed in inhomogeneous active baths, where the thermal and chemical gradients are replaced separately by activity and concentration gradients of the active particles. By performing simulations, we show that the passive colloidal particle experiences phoretic-like forces that originate from its interactions with the inhomogeneous active fluid, and thus drifts along the gradient field, leading to an accumulation. The results are similar to the traditional phoretic effects occurring in passive colloidal suspensions, implying that the concepts of thermophoresis and diffusiophoresis could be generalized into active baths.
|
Received: 12 May 2022
Revised: 25 May 2022
Accepted manuscript online:
|
PACS:
|
47.57.-s
|
(Complex fluids and colloidal systems)
|
|
87.16.Uv
|
(Active transport processes)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874397) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33000000). |
Corresponding Authors:
Fangfu Ye, Mingcheng Yang
E-mail: fye@iphy.ac.cn;mcyang@iphy.ac.cn
|
Cite this article:
Huan Liang(梁欢), Peng Liu(刘鹏), Fangfu Ye(叶方富), and Mingcheng Yang(杨明成) Active thermophoresis and diffusiophoresis 2022 Chin. Phys. B 31 104702
|
[1] Ramaswamy S 2010 Ann. Rev. Condens. Matter Phys. 1 323 [2] Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006 [3] Elgeti J, Winkler R G and Gompper G 2015 Rep. Prog. Phys. 78 056601 [4] Vicsek T and Zafeiris A 2012 Phys. Rep. 517 71 [5] Dunkel J, Heidenreich S, Drescher K, Wensink H H, Bär M and Goldstein R E 2013 Phys. Rev. Lett. 110 228102 [6] Deblais A, Barois T, Guerin T, Delville P H, Vaudaine R, Lintuvuori J S, Boudet J F, Baret J C and Kellay H 2018 Phys. Rev. Lett. 120 188002 [7] Liu P, Zhu H, Zeng Y, Du G, Ning L, Wang D, Chen K, Lu Y, Zheng N, Ye F and Yang M 2020 Proc. Nat. Acad. Sci. 117 11901 [8] Yang Q, Liang H, Liu R, Chen K, Ye F and Yang M 2021 Chin. Phys. Lett. 38 128701 [9] Wu C, Dai J, Li X, Gao L, Wang J, Liu J, Zheng J, Zhan X, Chen J, Cheng X, et al. 2021 Nat. Nanotechnol. 16 288 [10] Cates M E and Tailleur J 2015 Ann. Rev. Condens. Matter Phys. 6 219 [11] Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C and Speck T 2013 Phys. Rev. Lett. 110 238301 [12] Saintillan D 2018 Ann. Rev. Fluid Mech. 50 563 [13] Solon A P, Fily Y, Baskaran A, Cates M E, Kafri Y, Kardar M and Tailleur J 2015 Nat. Phys. 11 673 [14] Mandal S, Liebchen B and Löwen H 2019 Phys. Rev. Lett. 123 228001 [15] Ye S, Liu P, Wei Z, Ye F, Yang M and Chen K 2020 Chin. Phys. B 29 058201 [16] Takatori S C, Yan W and Brady J F 2014 Phys. Rev. Lett. 113 028103 [17] Solon A P, Stenhammar J, Wittkowski R, Kardar M, Kafri Y, Cates M E and Tailleur J 2015 Phys. Rev. Lett. 114 198301 [18] Koenderink G, Vliegenthart G, Kluijtmans S, Van Blaaderen A, Philipse A and Lekkerkerker H 1999 Langmuir 15 4693 [19] Ni R, Stuart M A C and Bolhuis P G 2015 Phys. Rev. Lett. 114 018302 [20] Krafnick R C and García A E 2015 Phys. Rev. E 91 022308 [21] Harder J, Mallory S, Tung C, Valeriani C and Cacciuto A 2014 The Journal of Chemical Physics 141 194901 [22] Zaeifi Yamchi M and Naji A 2017 J. Chem. Phys. 147 194901 [23] Liu P, Ye S, Ye F, Chen K and Yang M 2020 Phys. Rev. Lett. 124 158001 [24] Enculescu M and Stark H 2011 Phys. Rev. Lett. 107 058301 [25] Solon A P, Cates M E and Tailleur J 2015 Eur. Phys. J. Special Topics 224 1231 [26] Ye S, Liu P, Ye F, Chen K and Yang M 2020 Soft Matter 16 4655 [27] Anderson J L 1989 Ann. Rev. Fluid Mech. 21 61 [28] Piazza R and Parola A 2008 J. Phys.: Condens. Matter 20 153102 [29] Würger A 2010 Rep. Prog. Phys. 73 126601 [30] Velegol D, Garg A, Guha R, Kar A and Kumar M 2016 Soft Matter 12 4686 [31] Abécassis B, Cottin-Bizonne C, Ybert C, Ajdari A and Bocquet L 2008 Nat. Mater. 7 785 [32] Hill R J, Saville D and Russel W 2003 Journal of Colloid and Interface Science 258 56 [33] Braun M, Würger A and Cichos F 2014 Phys. Chem. Chem. Phys. 16 15207 [34] Lin L, Zhang J, Peng X, Wu Z, Coughlan A C, Mao Z, Bevan M A and Zheng Y 2017 Sci. Adv. 3 e1700458 [35] Yang M, Liu R, Ripoll M and Chen K 2014 Nanoscale 6 13550 [36] Golestanian R, Liverpool T and Ajdari A 2007 New J. Phys. 9 126 [37] Ebbens S J and Howse J R 2010 Soft Matter 6 726 [38] Nourhani A and Lammert P E 2016 Phys. Rev. Lett. 116 178302 [39] Wang J 2012 Lab on a Chip 12 1944 [40] Golestanian R, Liverpool T B and Ajdari A 2005 Phys. Rev. Lett. 94 220801 [41] Jiang H R, Yoshinaga N and Sano M 2010 Phys. Rev. Lett. 105 268302 [42] Lou X, Yu N, Chen K, Zhou X, Podgornik R and Yang M 2021 Chin. Phys. B 30 114702 [43] Brady J F 2021 J. Fluid Mech. 922 A10 [44] Razin N, Voituriez R, Elgeti J and Gov N S 2017 Phys. Rev. E 96 032606 [45] Razin N, Voituriez R, Elgeti J and Gov N S 2017 Phys. Rev. E 96 052409 [46] Merlitz H, Wu C and Sommer J U 2017 Soft Matter 13 3726 [47] Almonacid M, Ahmed W W, Bussonnier M, Mailly P, Betz T, Voituriez R, Gov N S and Verlhac M H 2015 Nature Cell Biology 17 470 [48] Chen J X, Chen Y G and Ma Y Q 2016 Soft Matter 12 1876 [49] Shen M, Ye F, Liu R, Chen K, Yang M and Ripoll M 2016 J. Chem. Phys. 145 124119 [50] Tailleur J and Cates M 2008 Phys. Rev. Lett. 100 218103 [51] Stenhammar J, Wittkowski R, Marenduzzo D and Cates M E 2016 Sci. Adv. 2 e1501850 [52] Yu N, Lou X, Chen K and Yang M 2019 Soft Matter 15 408 [53] Weinert F M and Braun D 2008 Phys. Rev. Lett. 101 168301 [54] Yang M and Ripoll M 2013 Soft Matter 9 4661 [55] Rohwer C M, Kardar M and Krüger M 2020 J. Chem. Phys. 152 084109 [56] Jiang C, Li B, Dou S X, Wang P Y and Li H 2020 Chin. Phys. Lett. 37 078701 [57] Chen X 2020 Chin. Phys. Lett. 37 80103 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|