Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 067201    DOI: 10.1088/1674-1056/28/6/067201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetotransport properties of graphene layers decorated with colloid quantum dots

Ri-Jia Zhu(朱日佳)1,2, Yu-Qing Huang(黄雨青)2, Jia-Yu Li(李佳玉)2, Ning Kang(康宁)2, Hong-Qi Xu(徐洪起)1,2,3
1 School of Physics, Dalian University of Technology, Dalian 116024, China;
2 Beijing Key Laboratory of Quantum Devices, Key Laboratory for Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China;
3 Division of Solid State Physics, Lund University, P. O. Box 118, S-22100 Lund, Sweden
Abstract  

The hybrid graphene-quantum dot devices can potentially be used to tailor the electronic, optical, and chemical properties of graphene. Here, the low temperature electronic transport properties of bilayer graphene decorated with PbS colloid quantum dots (CQDs) have been investigated in the weak or strong magnetic fields. The presence of the CQDs introduces additional scattering potentials that alter the magnetotransport properties of the graphene layers, leading to the observation of a new set of magnetoconductance oscillations near zero magnetic field as well as the high-field quantum Hall regime. The results bring about a new strategy for exploring the quantum interference effects in two-dimensional materials which are sensitive to the surrounding electrostatic environment, and open up a new gateway for exploring the graphene sensing with quantum interference effects.

Keywords:  graphene      colloid quantum dots      quantum Hall effect      Aharonov-Bohm oscillations  
Received:  31 January 2019      Revised:  08 April 2019      Accepted manuscript online: 
PACS:  72.80.Vp (Electronic transport in graphene)  
  73.21.La (Quantum dots)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300601 and 2017YFA0303304) and the National Natural Science Foundation of China (Grant Nos. 11774005, 11874071, 91221202, and 91421303).

Corresponding Authors:  Ning Kang, Hong-Qi Xu     E-mail:  nkang@pku.edu.cn;hqxu@pku.edu.cn

Cite this article: 

Ri-Jia Zhu(朱日佳), Yu-Qing Huang(黄雨青), Jia-Yu Li(李佳玉), Ning Kang(康宁), Hong-Qi Xu(徐洪起) Magnetotransport properties of graphene layers decorated with colloid quantum dots 2019 Chin. Phys. B 28 067201

[1] Caneva S, Gehring P, García-Suárez V M, García-Fuente A, Stefani D, Olavarria-Contreras I J, Ferrer J, Dekker C and van der Zant H S J 2018 Nat. Nanotechnol. 13 1126
[2] De Graaf S E, Skacel S T, Hönigl-Decrinis T, Shaikhaidarov R, Rotzinger H, Linzen S, Ziegler M, Hübner U, Meyer H G, Antonov V, Il'ichev E, Ustinov A V, Tzalenchuk A Y and Astafiev O V 2018 Nat. Phys. 14 590
[3] Hackens B, Martins F, Faniel S, Dutu C A, Sellier H, Huant S, Pala M, Desplanque L, Wallart X and Bayot V 2010 Nat. Commun. 1 39
[4] Ji Y, Chung Y, Sprinzak D, Heiblum M, Mahalu D and Shtrikman H 2003 Nature 422 415
[5] Hong S S, Zhang Y, Cha J J, Qi X L and Cui Y 2014 Nano Lett. 14 2815
[6] Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B and Stampfer C 2015 Sci. Adv. 1 e1500222
[7] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379
[8] Wei D S, van der Sar T, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Halperin B I and Yacoby A 2017 Sci. Adv. 3 e1700600
[9] Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
[10] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[11] Zhang Y, Tan Y, Stormer H L and Kim P 2005 Nature 438 201
[12] Novoselov K S, McCann E, Morozov S V, Fal'ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nat. Phys. 2 177
[13] Chen J H, Jang C, Xiao S, Ishigami M and Fuhrer M S 2008 Nat. Nanotechnol. 3 206
[14] Engels S, Terrés B, Epping A, Khodkov T, Watanabe K, Taniguchi T, Beschoten B and Stampfer C 2014 Phys. Rev. Lett. 113 126801
[15] Allain A, Han Z and Bouchiat V 2012 Nat. Mater. 11 590
[16] Gonzalez-Herrero H, Gomez-Rodriguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F and Brihuega I 2016 Science 352 437
[17] Sukenik N, Alpern H, Katzir E, Yochelis S, Millo O and Paltiel Y 2018 Adv. Mater. Technol. 3 1700300
[18] Dubey S, Singh V, Bhat A K, Parikh P, Grover S, Sensarma R, Tripathi V, Sengupta K and Deshmukh M M 2013 Nano Lett. 13 3990
[19] Forsythe C, Zhou X, Watanabe K, Taniguchi T, Pasupathy A, Moon P, Koshino M, Kim P and Dean C R 2018 Nat. Nanotechnol. 13 566
[20] Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer F P G, Gatti F and Koppens F H L 2012 Nat. Nanotechnol. 7 363
[21] Nag A, Mitra A and Mukhopadhyay S C 2018 Sens. Actuators A Phys. 270 177
[22] Altshuler B L, Khmel'Nitzkii D, Larkin A I and Lee P A 1980 Phys. Rev. B 22 5142
[23] McCann E, Kechedzhi K, Fal'ko V I, Suzuura H, Ando T and Altshuler B L 2006 Phys. Rev. Lett. 97 146805
[24] Tikhonenko F V, Kozikov A A, Savchenko A K and Gorbachev R V 2009 Phys. Rev. Lett. 103 226801
[25] Huang Y Q, Zhu R J, Kang N, Du J and Xu H Q 2013 Appl. Phys. Lett. 103 143119
[26] Carrillo-Bastos R, Ochoa M, Zavala S A and Mireles F 2018 Phys. Rev. B 98 165436
[27] Gorbachev R V, Tikhonenko F V, Mayorov A S, Horsell D W and Savchenko A K 2007 Phys. Rev. Lett. 98 176805
[28] Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
[29] Chen Y F, Bae M H, Chialvo C, Dirks T, Bezryadin A and Mason N 2011 Physica B 406 785
[30] Liao Z M, Han B H, Wu H C and Yu D P 2010 Appl. Phys. Lett. 97 163110
[31] Staley N, Puls C and Liu Y 2008 Phys. Rev. B 77 155429
[32] Iye Y, Ueki M, Endo A and Katsumoto S 2004 J. Phys. Soc. Jpn. 73 3370
[33] Uryu S and Ando T 1996 Phys. Rev. B 53 13613
[34] Sun Z, Liu Z, Li J, Tai G A, Lau S P and Yan F 2012 Adv. Mater. 24 5878
[35] Kim G H, de Arquar F P G, Yoon Y J, Lan X, Liu M, Voznyy O, Yang Z, Fan F, Ip A H, Kanjanaboos P, Hoogland S, Kim J Y and Sargent E H 2015 Nano Lett. 15 7691
[36] Cao W, Yuan L, Patterson R, Wen X, Tapping P C, Kee T, Veetil B P, Zhang P, Zhang Z, Zhang Q, Reece P, Bremner S, Shrestha S, Conibeer G and Huang S 2017 Nanoscale 9 17133
[37] Giansante C, Carbone L, Giannini C, Altamura D, Ameer Z, Maruccio G, Loiudice A, Belviso M R, Cozzoli P D, Rizzo A and Gigli G 2013 J. Phys. Chem. C 117 13305
[38] Goldman V J and Su B 1995 Science 267 1010
[39] Camino F E, Zhou W and Goldman V J 2007 Phys. Rev. Lett. 98 076805
[40] Kato M, Endo A, Katsumoto S and Iye Y 2008 Phys. Rev. B 77 155318
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[8] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[9] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[13] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[14] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!