CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetotransport properties of graphene layers decorated with colloid quantum dots |
Ri-Jia Zhu(朱日佳)1,2, Yu-Qing Huang(黄雨青)2, Jia-Yu Li(李佳玉)2, Ning Kang(康宁)2, Hong-Qi Xu(徐洪起)1,2,3 |
1 School of Physics, Dalian University of Technology, Dalian 116024, China;
2 Beijing Key Laboratory of Quantum Devices, Key Laboratory for Physics and Chemistry of Nanodevices and Department of Electronics, Peking University, Beijing 100871, China;
3 Division of Solid State Physics, Lund University, P. O. Box 118, S-22100 Lund, Sweden |
|
|
Abstract The hybrid graphene-quantum dot devices can potentially be used to tailor the electronic, optical, and chemical properties of graphene. Here, the low temperature electronic transport properties of bilayer graphene decorated with PbS colloid quantum dots (CQDs) have been investigated in the weak or strong magnetic fields. The presence of the CQDs introduces additional scattering potentials that alter the magnetotransport properties of the graphene layers, leading to the observation of a new set of magnetoconductance oscillations near zero magnetic field as well as the high-field quantum Hall regime. The results bring about a new strategy for exploring the quantum interference effects in two-dimensional materials which are sensitive to the surrounding electrostatic environment, and open up a new gateway for exploring the graphene sensing with quantum interference effects.
|
Received: 31 January 2019
Revised: 08 April 2019
Accepted manuscript online:
|
PACS:
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
73.21.La
|
(Quantum dots)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0300601 and 2017YFA0303304) and the National Natural Science Foundation of China (Grant Nos. 11774005, 11874071, 91221202, and 91421303). |
Corresponding Authors:
Ning Kang, Hong-Qi Xu
E-mail: nkang@pku.edu.cn;hqxu@pku.edu.cn
|
Cite this article:
Ri-Jia Zhu(朱日佳), Yu-Qing Huang(黄雨青), Jia-Yu Li(李佳玉), Ning Kang(康宁), Hong-Qi Xu(徐洪起) Magnetotransport properties of graphene layers decorated with colloid quantum dots 2019 Chin. Phys. B 28 067201
|
[1] |
Caneva S, Gehring P, García-Suárez V M, García-Fuente A, Stefani D, Olavarria-Contreras I J, Ferrer J, Dekker C and van der Zant H S J 2018 Nat. Nanotechnol. 13 1126
|
[2] |
De Graaf S E, Skacel S T, Hönigl-Decrinis T, Shaikhaidarov R, Rotzinger H, Linzen S, Ziegler M, Hübner U, Meyer H G, Antonov V, Il'ichev E, Ustinov A V, Tzalenchuk A Y and Astafiev O V 2018 Nat. Phys. 14 590
|
[3] |
Hackens B, Martins F, Faniel S, Dutu C A, Sellier H, Huant S, Pala M, Desplanque L, Wallart X and Bayot V 2010 Nat. Commun. 1 39
|
[4] |
Ji Y, Chung Y, Sprinzak D, Heiblum M, Mahalu D and Shtrikman H 2003 Nature 422 415
|
[5] |
Hong S S, Zhang Y, Cha J J, Qi X L and Cui Y 2014 Nano Lett. 14 2815
|
[6] |
Banszerus L, Schmitz M, Engels S, Dauber J, Oellers M, Haupt F, Watanabe K, Taniguchi T, Beschoten B and Stampfer C 2015 Sci. Adv. 1 e1500222
|
[7] |
Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P and Geim A K 2007 Science 315 1379
|
[8] |
Wei D S, van der Sar T, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Jarillo-Herrero P, Halperin B I and Yacoby A 2017 Sci. Adv. 3 e1700600
|
[9] |
Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
|
[10] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
|
[11] |
Zhang Y, Tan Y, Stormer H L and Kim P 2005 Nature 438 201
|
[12] |
Novoselov K S, McCann E, Morozov S V, Fal'ko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nat. Phys. 2 177
|
[13] |
Chen J H, Jang C, Xiao S, Ishigami M and Fuhrer M S 2008 Nat. Nanotechnol. 3 206
|
[14] |
Engels S, Terrés B, Epping A, Khodkov T, Watanabe K, Taniguchi T, Beschoten B and Stampfer C 2014 Phys. Rev. Lett. 113 126801
|
[15] |
Allain A, Han Z and Bouchiat V 2012 Nat. Mater. 11 590
|
[16] |
Gonzalez-Herrero H, Gomez-Rodriguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F and Brihuega I 2016 Science 352 437
|
[17] |
Sukenik N, Alpern H, Katzir E, Yochelis S, Millo O and Paltiel Y 2018 Adv. Mater. Technol. 3 1700300
|
[18] |
Dubey S, Singh V, Bhat A K, Parikh P, Grover S, Sensarma R, Tripathi V, Sengupta K and Deshmukh M M 2013 Nano Lett. 13 3990
|
[19] |
Forsythe C, Zhou X, Watanabe K, Taniguchi T, Pasupathy A, Moon P, Koshino M, Kim P and Dean C R 2018 Nat. Nanotechnol. 13 566
|
[20] |
Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer F P G, Gatti F and Koppens F H L 2012 Nat. Nanotechnol. 7 363
|
[21] |
Nag A, Mitra A and Mukhopadhyay S C 2018 Sens. Actuators A Phys. 270 177
|
[22] |
Altshuler B L, Khmel'Nitzkii D, Larkin A I and Lee P A 1980 Phys. Rev. B 22 5142
|
[23] |
McCann E, Kechedzhi K, Fal'ko V I, Suzuura H, Ando T and Altshuler B L 2006 Phys. Rev. Lett. 97 146805
|
[24] |
Tikhonenko F V, Kozikov A A, Savchenko A K and Gorbachev R V 2009 Phys. Rev. Lett. 103 226801
|
[25] |
Huang Y Q, Zhu R J, Kang N, Du J and Xu H Q 2013 Appl. Phys. Lett. 103 143119
|
[26] |
Carrillo-Bastos R, Ochoa M, Zavala S A and Mireles F 2018 Phys. Rev. B 98 165436
|
[27] |
Gorbachev R V, Tikhonenko F V, Mayorov A S, Horsell D W and Savchenko A K 2007 Phys. Rev. Lett. 98 176805
|
[28] |
Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707
|
[29] |
Chen Y F, Bae M H, Chialvo C, Dirks T, Bezryadin A and Mason N 2011 Physica B 406 785
|
[30] |
Liao Z M, Han B H, Wu H C and Yu D P 2010 Appl. Phys. Lett. 97 163110
|
[31] |
Staley N, Puls C and Liu Y 2008 Phys. Rev. B 77 155429
|
[32] |
Iye Y, Ueki M, Endo A and Katsumoto S 2004 J. Phys. Soc. Jpn. 73 3370
|
[33] |
Uryu S and Ando T 1996 Phys. Rev. B 53 13613
|
[34] |
Sun Z, Liu Z, Li J, Tai G A, Lau S P and Yan F 2012 Adv. Mater. 24 5878
|
[35] |
Kim G H, de Arquar F P G, Yoon Y J, Lan X, Liu M, Voznyy O, Yang Z, Fan F, Ip A H, Kanjanaboos P, Hoogland S, Kim J Y and Sargent E H 2015 Nano Lett. 15 7691
|
[36] |
Cao W, Yuan L, Patterson R, Wen X, Tapping P C, Kee T, Veetil B P, Zhang P, Zhang Z, Zhang Q, Reece P, Bremner S, Shrestha S, Conibeer G and Huang S 2017 Nanoscale 9 17133
|
[37] |
Giansante C, Carbone L, Giannini C, Altamura D, Ameer Z, Maruccio G, Loiudice A, Belviso M R, Cozzoli P D, Rizzo A and Gigli G 2013 J. Phys. Chem. C 117 13305
|
[38] |
Goldman V J and Su B 1995 Science 267 1010
|
[39] |
Camino F E, Zhou W and Goldman V J 2007 Phys. Rev. Lett. 98 076805
|
[40] |
Kato M, Endo A, Katsumoto S and Iye Y 2008 Phys. Rev. B 77 155318
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|