Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 124701    DOI: 10.1088/1674-1056/ac306c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Phase behavior of rotationally asymmetric Brownian kites containing 90° internal angles

Huaqing Liu(柳华清)1,†, Yiwu Zong(宗奕吾)1,†, Zhanglin Hou(侯章林)2, Thomas G. Mason3,4,‡, and Kun Zhao(赵坤)1,5,§
1 Key Laboratory of Systems Bioengineering(Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
2 Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China;
3 Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, CA 90095, USA;
4 Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA;
5 Physics Department, Tianjin University, Tianjin 300072, China
Abstract  Previous Monte Carlo simulations have shown that ordered tetratic phases can emerge in a dense two-dimensional Brownian system of rotationally asymmetric hard kites having 90° internal angles. However, there have been no experimental investigations yet to compare with these simulation results. Here, we have fabricated two types of micron-sized kites having internal angles of 72°-90°-108°-90° and 72°-99°-90°-99°, respectively, and we have experimentally studied their phase behavior in two-dimensional systems. Interestingly and in contrast to the Monte Carlo simulations, the experimental results show a phase sequence of isotropic fluid-hexagonal rotator crystal-square crystal as the area fraction φA increases for both types of kites. The observed square crystal displays not only a quasi-long-range translational order but also (quasi-)long-range 4-fold bond- and molecular-orientational order; these characteristics confirm that tetratic order can emerge even in dense Brownian systems of rotationally asymmetric particles. A model based on local polymorphic configurations (LPCs) is proposed to understand the origin of the square lattice order in these dense kite systems. The results in this study provide a new route to realize custom-designed self-assembly of colloids by controlling LPCs.
Keywords:  tetratic order      colloidal kites      two-dimentional system      phase behavior  
Received:  11 September 2021      Revised:  08 October 2021      Accepted manuscript online:  18 October 2021
PACS:  47.57.J- (Colloidal systems)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874277 and 21621004, and 11704276) and the Natural Science Foundation of Tianjin, China (Grant No. 19JCQNJC14900).
Corresponding Authors:  Thomas G. Mason, Kun Zhao     E-mail:  mason@chem.ucla.edu;kunzhao@tju.edu.cn

Cite this article: 

Huaqing Liu(柳华清), Yiwu Zong(宗奕吾), Zhanglin Hou(侯章林), Thomas G. Mason, and Kun Zhao(赵坤) Phase behavior of rotationally asymmetric Brownian kites containing 90° internal angles 2021 Chin. Phys. B 30 124701

[1] Russel W B, Saville D A and Schowalter W R 1992 Colloidal dispersions, Vol. 54 (Cambridge, UK:John Wiley & Sons, Ltd)
[2] Gasser U, Weeks E R, Schofield A, Pusey P N and Weitz D A 2001 Science 292 258
[3] Anderson V J and Lekkerkerker H N W 2002 Nature 416 811
[4] Poon W 2004 Science 304 830
[5] Alsayed A M, Islam M F, Zhang J, Collings P J and Yodh A G 2005 Science 309 1207
[6] Mattsson J, Wyss H M, Fernandez-Nieves A, Miyazaki K, Hu Z, Reichman D R and Weitz D A 2009 Nature 462 83
[7] Wang Z, Wang F, Peng Y, Zheng Z and Han Y 2012 Science 338 87
[8] Manoharan V N 2015 Science 349 1253751
[9] Anderson J A, Antonaglia J, Millan J A, Engel M and Glotzer S C 2017 Phys. Rev. X 7 021001
[10] Ma X, Mishra C K, Habdas P and Yodh A G 2021 J. Chem. Phys. 155 074902
[11] Pusey P N and van Megen W 1986 Nature 320 340
[12] Zhu J, Li M, Rogers R, Meyer W, Ottewill R H, Russel W B, Chaikin P M and Crew S T S S S 1997 Nature 387 883
[13] Kegel W K and Blaaderen A V 2000 Science 287 290
[14] Weeks E R, Crocker J C, Levitt A C, Schofield A and Weitz D A 2000 Science 287 627
[15] Cheng Z, Chaikin P M, Russel W B, Meyer W V, Zhu J, Rogers R B and Ottewill R H 2001 Materials & Design 22 529
[16] Vieillard-Baron J 1972 J. Chem. Phys. 56 4729
[17] Yunker P J, Chen K, Zhang Z, Ellenbroek W G, Liu A J and Yodh A G 2011 Phys. Rev. E 83 011403
[18] Zheng Z, Ni R, Wang F, Dijkstra M, Wang Y, Han Y 2014 Nat. Commun. 5 3829
[19] Mizani S, Gurin P, Aliabadi R, Salehi H and Varga S 2020 J. Chem. Phys. 153 034501
[20] Bates M A and Frenkel D 2000 J. Chem. Phys. 112 10034
[21] Donev A, Burton J, Stillinger F H and Torquato S 2006 Phys. Rev. B 73 054109
[22] Glotzer S C and Solomon M J 2007 Nat. Mater. 6 557
[23] Hou Z, Zong Y, Sun Z, Ye F, Mason T G and Zhao K 2020 Nat. Commun. 11 2064
[24] Zhao K, Bruinsma R and Mason T G 2011 Proc. Natl. Acad. Sci. USA 108 2684
[25] Zhao K and Mason T G 2007 Phys. Rev. Lett. 99 268301
[26] Zhao K and Mason T G 2015 Proc. Natl. Acad. Sci. USA 112 12063
[27] Schilling T, Pronk S, Mulder B and Frenkel D 2005 Phys. Rev. E 71 036138
[28] Shen W, Antonaglia J, Anderson J A, Engel M, van Anders G and Glotzer S C 2019 Soft Matter 15 2571
[1] Self-assembly of lamella-forming diblock copolymers confined in nanochannels: Effect of confinement geometry
Yu Bin (于彬), Deng Jian-Hua (邓建华), Wang Zheng (王铮), Li Bao-Hui (李宝会), Shi An-Chang (史安昌). Chin. Phys. B, 2015, 24(4): 046402.
[2] Phase behaviors in binary mixture of diblock copolymers confined between two parallel walls
Pan Jun-Xing (潘俊星), Zhang Jin-Jun (张进军), Wang Bao-Feng (王宝凤), Wu Hai-Shun (武海顺), Sun Min-Na (孙敏娜 ). Chin. Phys. B, 2013, 22(2): 026401.
No Suggested Reading articles found!