Special Issue:
SPECIAL TOPIC — Active matters physics
|
SPECIAL TOPIC—Active matters physics |
Prev
Next
|
|
|
Symmetry properties of fluctuations in an actively driven rotor |
He Li(李赫)1, Xiang Yang(杨翔)1, Hepeng Zhang(张何朋)1,2 |
1 School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; 2 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210023, China |
|
|
Abstract We investigate rotational dynamics of an actively driven rotor through experiments and numerical simulations. While probability density distributions of rotor angular velocity are strongly non-Gaussian, relative probabilities of observing rotation in opposite directions are shown to be linearly related to the angular velocity magnitude. We construct a stochastic model to describe transitions between different states from rotor angular velocity data and use the stochastic model to show that symmetry properties in probability density distributions are related to the detailed fluctuation relation (FR) of entropy productions.
|
Received: 15 January 2020
Revised: 16 March 2020
Accepted manuscript online:
|
PACS:
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
05.60.-k
|
(Transport processes)
|
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11422427 and 11402069) and the Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning, China (Grant No. GZ2016004). |
Corresponding Authors:
He Li, Hepeng Zhang
E-mail: liheg36ke@gmail.com;hepeng_zhang@sjtu.edu.cn
|
Cite this article:
He Li(李赫), Xiang Yang(杨翔), Hepeng Zhang(张何朋) Symmetry properties of fluctuations in an actively driven rotor 2020 Chin. Phys. B 29 060502
|
[1] |
Evans D J and Searles D J 2002 Adv. Phys. 51 1529
|
[2] |
Seifert U 2012 Rep. Prog. Phys. 75 126001
|
[3] |
Wang G M, Sevick E M, Mittag E, Searles D J and Evans D J 2002 Phys. Rev. Lett. 89 050601
|
[4] |
Garnier N and Ciliberto S 2005 Phys. Rev. E 71 060101
|
[5] |
Douarche F, Joubaud S, Garnier N B, Petrosyan A and Ciliberto S 2006 Phys. Rev. Lett. 97 140603
|
[6] |
Blickle V, Speck T, Helden L, Seifert U and Bechinger C 2006 Phys. Rev. Lett. 96 070603
|
[7] |
Ciliberto S, Garnier N, Hernandez S, Lacpatia C, Pinton J F and Chavarria G R 2004 Physica A 340 204
|
[8] |
Feitosa K and Menon N 2004 Phys. Rev. Lett. 92 164301
|
[9] |
Puglisi A, Visco P, Barrat A, Trizac E and Wijland F V 2005 Phys. Rev. Lett. 95 110202
|
[10] |
Shang X D, Tong P and Xia K Q 2005 Phys. Rev. E 72 015301(R)
|
[11] |
Majumdar S and Sood A K 2008 Phys. Rev. Lett. 101 078301
|
[12] |
Kumar N, Ramaswamy S and Sood A K 2011 Phys. Rev. Lett. 106 118001
|
[13] |
Kumar N, Soni H, Ramaswamy S and Sood A K 2015 Phys. Rev. E 91 030102
|
[14] |
Joubaud S, Lohse D and Meer D V D 2012 Phys. Rev. Lett. 108 210604
|
[15] |
Ramaswamy S 2010 Annu. Rev. Conden. Ma. P. 1 323
|
[16] |
Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha A 2013 Rev. Mod. Phys. 85 1143
|
[17] |
Needleman D and Dogic Z 2017 Nat. Rev. Mats. 2 17048
|
[18] |
Bechinger C, Leonardo R Di, Löwen, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006
|
[19] |
Vicsek T and Zafeiris A 2012 Phys. Rep. 512 71
|
[20] |
Chen L M 2012 Euro. Phys. J. Spec. Top. 202 1
|
[21] |
Romanczuk P, Bär M, Ebeling W, Lindner B and Schimansky-Geier L 2012 Euro. Phys. J. Spec. Top. 202 1
|
[22] |
Wu X L and Libchaber A 2000 Phys. Rev. Lett. 84(13) 3017
|
[23] |
Angelani L, Maggi C, Bernardini M L, Rizzo A and Leonardo R Di 2011 Phys. Rev. Lett. 107 138302
|
[24] |
Dabelow L, Bo S and Eichhorn R 2019 Phys. Rev. X 9 021009
|
[25] |
Pietzonka P, Fodor É, Lohrmann C, Cates M E and Seifert U 2019 Phys. Rev. X 9 041032
|
[26] |
Argun A, Moradi A, Pinçe E, Bagci G B, Imparato A and Volpe G 2016 Phys. Rev. E 94 062150
|
[27] |
Li H and Zhang H P 2013 Europhys. Lett. 102 50007
|
[28] |
Dauchot O and Deméry V 2019 Phys. Rev. Lett. 122 068002
|
[29] |
Ciliberto S and Laroche C 1998 Le Journal de Physique IV 08(PR6) Pr6-215 - Pr6-219
|
[30] |
Joubaud S, Garnier N B and Ciliberto S 2007 J. Stat. Mech.: Theo. Exper. 2007 P09018
|
[31] |
Seifert U 2005 Phys. Rev. Lett. 95 040602
|
[32] |
Ford I J and Spinney R E 2012 Phys. Rev. E 86 021127
|
[33] |
Spinney R E and Ford I J 2012 Phys. Rev. Lett. 108 170603
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|