Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 060502    DOI: 10.1088/1674-1056/ab862b
Special Issue: SPECIAL TOPIC — Active matters physics
SPECIAL TOPIC—Active matters physics Prev   Next  

Symmetry properties of fluctuations in an actively driven rotor

He Li(李赫)1, Xiang Yang(杨翔)1, Hepeng Zhang(张何朋)1,2
1 School of Physics and Astronomy and Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210023, China
Abstract  We investigate rotational dynamics of an actively driven rotor through experiments and numerical simulations. While probability density distributions of rotor angular velocity are strongly non-Gaussian, relative probabilities of observing rotation in opposite directions are shown to be linearly related to the angular velocity magnitude. We construct a stochastic model to describe transitions between different states from rotor angular velocity data and use the stochastic model to show that symmetry properties in probability density distributions are related to the detailed fluctuation relation (FR) of entropy productions.
Keywords:  Brownian motor      active bath      fluctuation relation      active matter  
Received:  15 January 2020      Revised:  16 March 2020      Accepted manuscript online: 
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.60.-k (Transport processes)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11422427 and 11402069) and the Program for Professor of Special Appointment at Shanghai Institutions of Higher Learning, China (Grant No. GZ2016004).
Corresponding Authors:  He Li, Hepeng Zhang     E-mail:  liheg36ke@gmail.com;hepeng_zhang@sjtu.edu.cn

Cite this article: 

He Li(李赫), Xiang Yang(杨翔), Hepeng Zhang(张何朋) Symmetry properties of fluctuations in an actively driven rotor 2020 Chin. Phys. B 29 060502

[1] Evans D J and Searles D J 2002 Adv. Phys. 51 1529
[2] Seifert U 2012 Rep. Prog. Phys. 75 126001
[3] Wang G M, Sevick E M, Mittag E, Searles D J and Evans D J 2002 Phys. Rev. Lett. 89 050601
[4] Garnier N and Ciliberto S 2005 Phys. Rev. E 71 060101
[5] Douarche F, Joubaud S, Garnier N B, Petrosyan A and Ciliberto S 2006 Phys. Rev. Lett. 97 140603
[6] Blickle V, Speck T, Helden L, Seifert U and Bechinger C 2006 Phys. Rev. Lett. 96 070603
[7] Ciliberto S, Garnier N, Hernandez S, Lacpatia C, Pinton J F and Chavarria G R 2004 Physica A 340 204
[8] Feitosa K and Menon N 2004 Phys. Rev. Lett. 92 164301
[9] Puglisi A, Visco P, Barrat A, Trizac E and Wijland F V 2005 Phys. Rev. Lett. 95 110202
[10] Shang X D, Tong P and Xia K Q 2005 Phys. Rev. E 72 015301(R)
[11] Majumdar S and Sood A K 2008 Phys. Rev. Lett. 101 078301
[12] Kumar N, Ramaswamy S and Sood A K 2011 Phys. Rev. Lett. 106 118001
[13] Kumar N, Soni H, Ramaswamy S and Sood A K 2015 Phys. Rev. E 91 030102
[14] Joubaud S, Lohse D and Meer D V D 2012 Phys. Rev. Lett. 108 210604
[15] Ramaswamy S 2010 Annu. Rev. Conden. Ma. P. 1 323
[16] Marchetti M C, Joanny J F, Ramaswamy S, Liverpool T B, Prost J, Rao M and Simha A 2013 Rev. Mod. Phys. 85 1143
[17] Needleman D and Dogic Z 2017 Nat. Rev. Mats. 2 17048
[18] Bechinger C, Leonardo R Di, Löwen, Reichhardt C, Volpe G and Volpe G 2016 Rev. Mod. Phys. 88 045006
[19] Vicsek T and Zafeiris A 2012 Phys. Rep. 512 71
[20] Chen L M 2012 Euro. Phys. J. Spec. Top. 202 1
[21] Romanczuk P, Bär M, Ebeling W, Lindner B and Schimansky-Geier L 2012 Euro. Phys. J. Spec. Top. 202 1
[22] Wu X L and Libchaber A 2000 Phys. Rev. Lett. 84(13) 3017
[23] Angelani L, Maggi C, Bernardini M L, Rizzo A and Leonardo R Di 2011 Phys. Rev. Lett. 107 138302
[24] Dabelow L, Bo S and Eichhorn R 2019 Phys. Rev. X 9 021009
[25] Pietzonka P, Fodor É, Lohrmann C, Cates M E and Seifert U 2019 Phys. Rev. X 9 041032
[26] Argun A, Moradi A, Pinçe E, Bagci G B, Imparato A and Volpe G 2016 Phys. Rev. E 94 062150
[27] Li H and Zhang H P 2013 Europhys. Lett. 102 50007
[28] Dauchot O and Deméry V 2019 Phys. Rev. Lett. 122 068002
[29] Ciliberto S and Laroche C 1998 Le Journal de Physique IV 08(PR6) Pr6-215 - Pr6-219
[30] Joubaud S, Garnier N B and Ciliberto S 2007 J. Stat. Mech.: Theo. Exper. 2007 P09018
[31] Seifert U 2005 Phys. Rev. Lett. 95 040602
[32] Ford I J and Spinney R E 2012 Phys. Rev. E 86 021127
[33] Spinney R E and Ford I J 2012 Phys. Rev. Lett. 108 170603
[1] Graph dynamical networks for forecasting collective behavior of active matter
Yanjun Liu(刘彦君), Rui Wang(王瑞), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2022, 31(11): 116401.
[2] Active thermophoresis and diffusiophoresis
Huan Liang(梁欢), Peng Liu(刘鹏), Fangfu Ye(叶方富), and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(10): 104702.
[3] A composite micromotor driven by self-thermophoresis and Brownian rectification
Xin Lou(娄辛), Nan Yu(余楠), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2021, 30(11): 114702.
[4] Directed transport of coupled Brownian motors in a two-dimensional traveling-wave potential
Wei-Xia Wu(吴魏霞), Zhi-Gang Zheng(郑志刚), Yan-Li Song(宋艳丽), Ying-Rong Han(韩英荣), Zhi-Cheng Sun(孙志成), Chen-Pu Li(李晨璞). Chin. Phys. B, 2020, 29(9): 090503.
[5] Simulation of microswimmer hydrodynamics with multiparticle collision dynamics
Andreas Z?ttl. Chin. Phys. B, 2020, 29(7): 074701.
[6] Constraint dependence of average potential energy of a passive particle in an active bath
Simin Ye(叶思敏), Peng Liu(刘鹏), Zixuan Wei(魏子轩), Fangfu Ye(叶方富), Mingcheng Yang(杨明成), Ke Chen(陈科). Chin. Phys. B, 2020, 29(5): 058201.
[7] Collective motion of active particles in environmental noise
Qiu-shi Chen(陈秋实), Ming Ji(季铭). Chin. Phys. B, 2017, 26(9): 098903.
[8] Anomalous boundary deformation induced by enclosed active particles
Wen-De Tian(田文得), Yan Gu(顾燕), Yong-Kun Guo(郭永坤), Kang Chen(陈康). Chin. Phys. B, 2017, 26(10): 100502.
[9] Current and efficiency optimization under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydiner. Chin. Phys. B, 2016, 25(9): 090501.
[10] Current and efficiency of Brownian particles under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydıner. Chin. Phys. B, 2015, 24(4): 040501.
[11] Two-dimensional model of elastically coupled molecular motors
Zhang Hong-Wei(张红卫), Wen Shu-Tang(文书堂), Chen Gai-Rong(陈改荣), Li Yu-Xiao(李玉晓), Cao Zhong-Xing(曹中兴), and Li Wei(李伟) . Chin. Phys. B, 2012, 21(3): 038701.
[12] Feedback control of two-headed Brownian motors in flashing ratchet potential
Zhao A-Ke(赵阿可), Zhang Hong-Wei(张红卫), and Li Yu-Xiao(李玉晓). Chin. Phys. B, 2010, 19(11): 110506.
[13] The Onsager reciprocity relation and generalized efficiency of a thermal Brownian motor
Gao Tian-Fu(高天附), Zhang Yue(张悦), and Chen Jin-Can(陈金灿). Chin. Phys. B, 2009, 18(8): 3279-3286.
No Suggested Reading articles found!