Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 036104    DOI: 10.1088/1674-1056/abd6f8
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness

Jian Li(李健)1, Bo-kai Zhang(张博凯)2,†, and Yu-Shan Li(李玉山)1,
1 Department of Physics and Electronic Engineering, Heze University, Heze 274015, China; 2 Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
Abstract  Colloidal polymers with tunable chain stiffness have been successfully assembled in experiments recently. Similar to molecular polymers, chain stiffness is an important feature which can distinctly affect the dynamical behaviors of colloidal polymers. Hence, we model colloidal polymers with controlled chain stiffness and study the effect of chain stiffness on glassy behaviors. For stiff chains, there are long-ranged periodic intrachain correlations besides two incompatible local length scales, i.e., monomer size and bond length. The mean square displacement of monomers exhibits sub-diffusion at intermediate time/length scale and the sub-diffusive exponent increases with chain stiffness. The data of localization length of stiff polymers versus rescaled volume fraction for different monomer sizes can gather close to an exponential curve and decay slower than those of flexible polymers. The increase of chain stiffness linearly increases the activation energy of the colloidal-polymer system and thus makes the colloidal polymers vitrify at lower volume fraction. Static and dynamic equivalences between stiff colloidal polymers of different monomer sizes have been checked.
Keywords:  glassy dynamics      colloidal polymers      molecular dynamics      mean square displacement  
Received:  11 November 2020      Revised:  20 December 2020      Accepted manuscript online:  28 December 2020
PACS:  61.43.Fs (Glasses)  
  64.70.kj (Glasses)  
  64.70.km (Polymers)  
  64.70.pj (Polymers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804085 and 11847115) and the Doctoral Foundation of Heze University (Grant No. XY18BS13).
Corresponding Authors:  Corresponding author. E-mail: bkzhang@zstu.edu.cn Corresponding author. E-mail: lysh507@163.com   

Cite this article: 

Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山) Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness 2021 Chin. Phys. B 30 036104

1 Michielettoa D and Turnerb M S 2016 Proc. Natl. Acad. Sci. USA 113 5195
2 Hsu H P and Kremer K 2019 J. Chem. Phys. 150 091101
3 Zirdehi E M andVarnik F 2019 J. Chem. Phys. 150 024903
4 Zhang B K, Li H S, Li J, Chen K, Tian W D and Ma Y Q 2016 Soft Matter 12 8104
5 Li J and Zhang B K 2019 Chin. Phys. B 28 126101
6 Baschnagel J and Varnik F 2005 J. Phys.: Condens. Matter 17 R851
7 Barrat J L, Baschnagel J and Lyulin A 2010 Soft Matter 6 3430
8 Wang C, Chen Y C, Zhang S, Qi H K and Luo M B 2020 Chin. Phys. B 29 108201
9 Chen K and Schweizer K S 2007 Phys. Rev. Lett. 98 167802
10 Chen K and Schweizer K S 2009 Phys. Rev. Lett. 102 038301
11 Wan W B, Lv H H, Merlitz H and Wu C X 2016 Chin. Phys. B 25 106101
12 Paul W and Smith G D 2004 Rep. Prog. Phys. 67 1117
13 Bennemann C, Baschnagel J, Paul W and Binder K 1999 Comput. Theor. Polym. Sci. 9 217
14 Brodeck M, Alvarez F, Arbe A, Juranyi F, Unruh T, Holderer O, Colmenero J and Richter D 2009 J. Chem. Phys. 130 094908
15 Bernabei M, Moreno A J and Colmenero J 2008 Phys. Rev. Lett. 101 255701
16 Bernabei M, Moreno A J and Colmenero J 2009 J. Chem. Phys. 131 204502
17 Bulacu M and Giessen E V D 2007 Phys. Rev. E 76 011807
18 Bulacu M and Giessen E V D 2005 J. Chem. Phys. 123 114901
19 Bernabei M, Moreno A J, Zaccarelli E, Sciortino F and Colmenero J 2011 J. Chem. Phys. 134 024523
20 Bernabei M, Moreno A J and Colmenero J 2011 J. Phys.: Condens. Matter 23 234119
21 Hill L J, Pinna N, Char K and Pyun J 2015 Prog. Polym. Sci. 40 85
22 Gao B, Arya G and Tao A R 2012 Nat. Nanotechnol. 7 433
23 Yang M, Chen G, Zhao Y, Silber G, Wang Y, Xing S, Han Y and Chen H 2010 Phys. Chem. Chem. Phys. 12 11850
24 Zhao Y, Xu L, Marzan L M L, Kuang H, Ma W, Garcia A A, Abajo F J G D, Kotov N A, Wang L and Xu C 2013 J. Phys. Chem. Lett. 4 641
25 Bannwarth M B, Utech S, Ebert S, Weitz D A, Crespy D and Landfester K 2015 ACS Nano 9 2720
26 Guo D, Li C, Wang Y, Li Y N and Song Y L 2017 Angew. Chem. 129 15550
27 Vutukuri H R, Demir\"ors A F, Peng B, Oostrum P D J V, Imhof A and Blaaderen A V 2012 Angew. Chem. Int. Ed. 51 11249
28 Byrom J, Han P, Savory M and Biswal S L 2014 Langmuir 30 9045
29 Stuij S, Doorn J M V, Kodger T, Sprakel J, Coulais C and Schall P 2019 Phys. Rev. Research 1 023033
30 Li J, Zhang B K, Li H S, Chen K, Tian W D and Tong P Q 2016 J. Chem. Phys. 144 204509
31 Gleim T, Kob W and Binder K 1998 Phys. Rev. Lett. 81 4404
32 Tokuyama M, Yamazaki H and Terada Y 2003 Phys. Rev. E 67 062403
33 Berthier L, Biroli G, Bouchaud J P, Kob W, Miyazaki K and Reichman D R 2007 J. Chem. Phys. 126 184503
34 Hofling F, Munk T, Frey E and Franosch T 2008 J. Chem. Phys. 128 164517
35 Iacovella C R, Horsch M A and Glotzer S C 2008 J. Chem. Phys. 129 044902
36 Kremer K and Grest G S 1990 J. Chem. Phys. 92 5057
37 Paul W 2002 Chem. Phys. 284 59
38 Aichele M and Baschnagel J 2001 Eur. Phys. J. E 5 245
39 Bennemann C, Paul W, Binder K and D\"unweg B 1998 Phys. Rev. E 57 843
40 Chen J X, Zhu J X, Ma Y Q and Cao J S 2014 EPL 106 18003
41 Li J, Zhang B K 2020 EPL 130 56001
42 There is no unique definition of the two ends of caging regime in the MSD curve. We mark the two ends by searching the points at which the slope of the log-log plot of the MSD curve reaches the average of the slopes of the caging regime and the sub-diffusive regime.
43 Gotze W and Sjogren L 1992 Rep. Prog. Phys. 55 241
44 Fuchs M, G\"otze W and Mayr M R 1998 Phys. Rev. E 58 3384
45 Kim J, Kim C and Sung B J 2013 Phys. Rev. Lett. 110 047801
46 Schweizer K S and Saltzman E J 2003 J. Chem. Phys. 119 1181
47 Angell C A 1995 Science 267 1924
48 Gotze W 1999 J. Phys.: Condens. Matter 11 A1
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[4] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[12] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[13] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!