CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness |
Jian Li(李健)1, Bo-kai Zhang(张博凯)2,†, and Yu-Shan Li(李玉山)1,‡ |
1 Department of Physics and Electronic Engineering, Heze University, Heze 274015, China; 2 Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China |
|
|
Abstract Colloidal polymers with tunable chain stiffness have been successfully assembled in experiments recently. Similar to molecular polymers, chain stiffness is an important feature which can distinctly affect the dynamical behaviors of colloidal polymers. Hence, we model colloidal polymers with controlled chain stiffness and study the effect of chain stiffness on glassy behaviors. For stiff chains, there are long-ranged periodic intrachain correlations besides two incompatible local length scales, i.e., monomer size and bond length. The mean square displacement of monomers exhibits sub-diffusion at intermediate time/length scale and the sub-diffusive exponent increases with chain stiffness. The data of localization length of stiff polymers versus rescaled volume fraction for different monomer sizes can gather close to an exponential curve and decay slower than those of flexible polymers. The increase of chain stiffness linearly increases the activation energy of the colloidal-polymer system and thus makes the colloidal polymers vitrify at lower volume fraction. Static and dynamic equivalences between stiff colloidal polymers of different monomer sizes have been checked.
|
Received: 11 November 2020
Revised: 20 December 2020
Accepted manuscript online: 28 December 2020
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11804085 and 11847115) and the Doctoral Foundation of Heze University (Grant No. XY18BS13). |
Corresponding Authors:
†Corresponding author. E-mail: bkzhang@zstu.edu.cn ‡Corresponding author. E-mail: lysh507@163.com
|
Cite this article:
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山) Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness 2021 Chin. Phys. B 30 036104
|
1 Michielettoa D and Turnerb M S 2016 Proc. Natl. Acad. Sci. USA 113 5195 2 Hsu H P and Kremer K 2019 J. Chem. Phys. 150 091101 3 Zirdehi E M andVarnik F 2019 J. Chem. Phys. 150 024903 4 Zhang B K, Li H S, Li J, Chen K, Tian W D and Ma Y Q 2016 Soft Matter 12 8104 5 Li J and Zhang B K 2019 Chin. Phys. B 28 126101 6 Baschnagel J and Varnik F 2005 J. Phys.: Condens. Matter 17 R851 7 Barrat J L, Baschnagel J and Lyulin A 2010 Soft Matter 6 3430 8 Wang C, Chen Y C, Zhang S, Qi H K and Luo M B 2020 Chin. Phys. B 29 108201 9 Chen K and Schweizer K S 2007 Phys. Rev. Lett. 98 167802 10 Chen K and Schweizer K S 2009 Phys. Rev. Lett. 102 038301 11 Wan W B, Lv H H, Merlitz H and Wu C X 2016 Chin. Phys. B 25 106101 12 Paul W and Smith G D 2004 Rep. Prog. Phys. 67 1117 13 Bennemann C, Baschnagel J, Paul W and Binder K 1999 Comput. Theor. Polym. Sci. 9 217 14 Brodeck M, Alvarez F, Arbe A, Juranyi F, Unruh T, Holderer O, Colmenero J and Richter D 2009 J. Chem. Phys. 130 094908 15 Bernabei M, Moreno A J and Colmenero J 2008 Phys. Rev. Lett. 101 255701 16 Bernabei M, Moreno A J and Colmenero J 2009 J. Chem. Phys. 131 204502 17 Bulacu M and Giessen E V D 2007 Phys. Rev. E 76 011807 18 Bulacu M and Giessen E V D 2005 J. Chem. Phys. 123 114901 19 Bernabei M, Moreno A J, Zaccarelli E, Sciortino F and Colmenero J 2011 J. Chem. Phys. 134 024523 20 Bernabei M, Moreno A J and Colmenero J 2011 J. Phys.: Condens. Matter 23 234119 21 Hill L J, Pinna N, Char K and Pyun J 2015 Prog. Polym. Sci. 40 85 22 Gao B, Arya G and Tao A R 2012 Nat. Nanotechnol. 7 433 23 Yang M, Chen G, Zhao Y, Silber G, Wang Y, Xing S, Han Y and Chen H 2010 Phys. Chem. Chem. Phys. 12 11850 24 Zhao Y, Xu L, Marzan L M L, Kuang H, Ma W, Garcia A A, Abajo F J G D, Kotov N A, Wang L and Xu C 2013 J. Phys. Chem. Lett. 4 641 25 Bannwarth M B, Utech S, Ebert S, Weitz D A, Crespy D and Landfester K 2015 ACS Nano 9 2720 26 Guo D, Li C, Wang Y, Li Y N and Song Y L 2017 Angew. Chem. 129 15550 27 Vutukuri H R, Demir\"ors A F, Peng B, Oostrum P D J V, Imhof A and Blaaderen A V 2012 Angew. Chem. Int. Ed. 51 11249 28 Byrom J, Han P, Savory M and Biswal S L 2014 Langmuir 30 9045 29 Stuij S, Doorn J M V, Kodger T, Sprakel J, Coulais C and Schall P 2019 Phys. Rev. Research 1 023033 30 Li J, Zhang B K, Li H S, Chen K, Tian W D and Tong P Q 2016 J. Chem. Phys. 144 204509 31 Gleim T, Kob W and Binder K 1998 Phys. Rev. Lett. 81 4404 32 Tokuyama M, Yamazaki H and Terada Y 2003 Phys. Rev. E 67 062403 33 Berthier L, Biroli G, Bouchaud J P, Kob W, Miyazaki K and Reichman D R 2007 J. Chem. Phys. 126 184503 34 Hofling F, Munk T, Frey E and Franosch T 2008 J. Chem. Phys. 128 164517 35 Iacovella C R, Horsch M A and Glotzer S C 2008 J. Chem. Phys. 129 044902 36 Kremer K and Grest G S 1990 J. Chem. Phys. 92 5057 37 Paul W 2002 Chem. Phys. 284 59 38 Aichele M and Baschnagel J 2001 Eur. Phys. J. E 5 245 39 Bennemann C, Paul W, Binder K and D\"unweg B 1998 Phys. Rev. E 57 843 40 Chen J X, Zhu J X, Ma Y Q and Cao J S 2014 EPL 106 18003 41 Li J, Zhang B K 2020 EPL 130 56001 42 There is no unique definition of the two ends of caging regime in the MSD curve. We mark the two ends by searching the points at which the slope of the log-log plot of the MSD curve reaches the average of the slopes of the caging regime and the sub-diffusive regime. 43 Gotze W and Sjogren L 1992 Rep. Prog. Phys. 55 241 44 Fuchs M, G\"otze W and Mayr M R 1998 Phys. Rev. E 58 3384 45 Kim J, Kim C and Sung B J 2013 Phys. Rev. Lett. 110 047801 46 Schweizer K S and Saltzman E J 2003 J. Chem. Phys. 119 1181 47 Angell C A 1995 Science 267 1924 48 Gotze W 1999 J. Phys.: Condens. Matter 11 A1 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|