Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 064704    DOI: 10.1088/1674-1056/ab892b
Special Issue: SPECIAL TOPIC — Active matters physics
SPECIAL TOPIC—Active matters physics Prev   Next  

Self-assembled vesicle-colloid hybrid swimmers: Non-reciprocal strokes with reciprocal actuation

Jaime Agudo-Canalejo, Babak Nasouri
Max Planck Institute for Dynamics and Self-Organization(MPIDS), 37077 Goettingen, Germany
Abstract  We consider a self-assembled hybrid system, composed of a bilayer vesicle to which a number of colloids are adhered. Based on known results of membrane curvature elasticity, we predict that, for sufficiently deflated prolate vesicles, the colloids can self-assemble into a ring at a finite distance away from the vesicle equator, thus breaking the up-down symmetry in the system. Because the relative variation of the position of the colloidal ring along the vesicle endows the system with an effective elasticity, periodic cycles of inflation and deflation can lead to non-reciprocal shape changes of the vesicle-colloid hybrid, allowing it to swim in a low Reynolds number environment under reciprocal actuation. We design several actuation protocols that allow control over the swimming direction.
Keywords:  vesicles      colloids      microswimmers      curvature  
Received:  30 January 2020      Revised:  18 March 2020      Accepted manuscript online: 
PACS:  47.63.Gd (Swimming microorganisms)  
  47.63.mf (Low-Reynolds-number motions)  
  87.16.D- (Membranes, bilayers, and vesicles)  
Corresponding Authors:  Jaime Agudo-Canalejo     E-mail:  jaime.agudo@ds.mpg.de

Cite this article: 

Jaime Agudo-Canalejo, Babak Nasouri Self-assembled vesicle-colloid hybrid swimmers: Non-reciprocal strokes with reciprocal actuation 2020 Chin. Phys. B 29 064704

[1] Dimova R and Marques C (eds) 2019 The Giant Vesicle Book, 1st ed (CRC Press)
[2] Discher D E and Ahmed F 2006 Annual Review of Biomedical Engineering 8 323
[3] Allen T M and Cullis P R 2013 Advanced Drug Delivery Reviews 65 36
[4] Lee J S and Feijen J 2012 Journal of Controlled Release 161 473
[5] Schwille P 2011 Science 333 1252
[6] Schwille P, Spatz J, Landfester K, Bodenschatz E, Herminghaus S, Sourjik V, Erb T J, Bastiaens P, Lipowsky R, Hyman A, Dabrock P, Baret J C, Vidakovic-Koch T, Bieling P, Dimova R, Mutschler H, Robinson T, Tang T Y D, Wegner S and Sundmacher K 2018 Angewandte Chemie International Edition 57 13382
[7] Chen I A and Walde P 2010 Cold Spring Harbor perspectives in biology 2 a002170
[8] Walde P 2010 BioEssays 32 296
[9] Sokolov A, Aranson I S, Kessler J O and Goldstein R E 2007 Phys. Rev. Lett. 98 158102
[10] Vicsek T and Zafeiris A 2012 Phys. Rep. 517 71
[11] Paxton W F, Kistler K C, Olmeda C C, Sen A, St Angelo S K, Cao Y, Mallouk T E, Lammert P E and Crespi V H 2004 J. Am. Chem. Soc. 126 13424
[12] Golestanian R, Liverpool T B and Ajdari A 2005 Phys. Rev. Lett. 94 220801
[13] Chen J X, Chen Y G and Kapral R 2018 Adv. Sci. 5 1800028
[14] Purcell E M 1977 Am. J. Phys. 45 3
[15] Najafi A and Golestanian R 2004 Phys. Rev. E 69 062901
[16] Golestanian R and Ajdari A 2008 Phys. Rev. E 77 036308
[17] Lauga E 2011 Soft Matter 7 3060
[18] Zhang H P, Liu B, Rodenborn B and Swinney H L 2014 Chin. Phys. B 23 114703
[19] Nasouri B, Vilfan A and Golestanian R 2019 Phys. Rev. Fluids 4 073101
[20] Seifert U, Berndl K and Lipowsky R 1991 Phys. Rev. A 44 1182
[21] Evans A A, Spagnolie S E and Lauga E 2010 Soft Matter 6 1737
[22] Wiggins C H and Goldstein R E 1998 Phys. Rev. Lett. 80 3879
[23] Avron J E, Kenneth O and Oaknin D H 2005 New J. Phys. 7 234
[24] Nasouri B, Khot A and Elfring G J 2017 Phys. Rev. Fluids 2 043101
[25] Datt C, Nasouri B and Elfring G J 2018 Phys. Rev. Fluids 3 123301
[26] Agudo-Canalejo J and Lipowsky R 2017 Soft Matter 13 2155
[27] Agudo-Canalejo J and Lipowsky R 2015 ACS Nano 9 3704
[28] Agudo-Canalejo J and Lipowsky R 2015 Nano Lett. 15 7168
[29] Seifert U 1997 Adv. Phys. 46 13
[30] Bahrami A H and Weikl T R 2018 Nano Lett. 18 1259
[31] Koltover I, Rädler J O and Safinya C 1999 Phys. Rev. Lett. 82 1991
[32] Vahid A, Šarić A and Idema T 2017 Soft Matter 13 4924
[33] Happel J and Brenner H 1983 Low Reynolds Number Hydrodynamics (Springer Netherlands)
[34] Kim S and Karilla J S 1991 Microhydrodynamics: principles and selected applications (Butterworth-Heinemann)
[35] Steinkühler J, Knorr R L, Zhao Z, Bhatia T, Bartelt S M, Wegner S, Dimova R and Lipowsky R 2020 Nat. Commun. 11 905
[36] Bahrami A H and Hummer G 2017 ACS Nano 11 9558
[37] Chabanon M, Ho J C, Liedberg B, Parikh A N and Rangamani P 2017 Biophysical Journal 112 1682
[38] Nasouri B and Elfring G J 2018 Phys. Rev. Fluids 3 044101
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Investigating the characteristic delay time in the leader-follower behavior in children single-file movement
Shu-Qi Xue(薛书琦), Nirajan Shiwakoti, Xiao-Meng Shi(施晓蒙), and Yao Xiao(肖尧). Chin. Phys. B, 2023, 32(2): 028901.
[3] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[4] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[5] Strain-dependent resistance and giant gauge factor in monolayer WSe2
Mao-Sen Qin(秦茂森), Xing-Guo Ye(叶兴国), Peng-Fei Zhu(朱鹏飞), Wen-Zheng Xu(徐文正), Jing Liang(梁晶), Kaihui Liu(刘开辉), and Zhi-Min Liao(廖志敏). Chin. Phys. B, 2021, 30(9): 097203.
[6] Proton loss of inner radiation belt during geomagnetic storm of 2018 based on CSES satellite observation
Zhen-Xia Zhang(张振霞), Xu-Hui Shen(申旭辉), Xin-Qiao Li(李新乔), and Yong-Fu Wang(王永福). Chin. Phys. B, 2021, 30(12): 129401.
[7] A composite micromotor driven by self-thermophoresis and Brownian rectification
Xin Lou(娄辛), Nan Yu(余楠), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2021, 30(11): 114702.
[8] Simulation of microswimmer hydrodynamics with multiparticle collision dynamics
Andreas Z?ttl. Chin. Phys. B, 2020, 29(7): 074701.
[9] Effect of C60 nanoparticles on elasticity of small unilamellar vesicles composed of DPPC bilayers
Tanlin Wei(魏坦琳), Lei Zhang(张蕾), Yong Zhang(张勇). Chin. Phys. B, 2020, 29(4): 048702.
[10] A note on “Lattice soliton equation hierarchy and associated properties”
Xi-Xiang Xu(徐西祥), Min Guo(郭敏). Chin. Phys. B, 2019, 28(1): 010202.
[11] Microdroplet targeting induced by substrate curvature
Hongguang Zhang(张红光), Zhenjiang Guo(郭振江), Shan Chen(陈珊), Bo Zhang(张博), Xianren Zhang(张现仁). Chin. Phys. B, 2018, 27(9): 096801.
[12] Thermal properties of a two-dimensional intrinsically curved semiflexible biopolymer
Zicong Zhou(周子聪), Yanting Wang(王延颋). Chin. Phys. B, 2017, 26(3): 038701.
[13] Controllable soliton propagation based on phase-front curvature in asymmetrical nonlocal media
Huafeng Zhang(张华峰), Hua Lü(吕华), Jianghua Luo(罗江华), Lihui Sun(孙利辉). Chin. Phys. B, 2016, 25(8): 084210.
[14] Multiscale molecular dynamics simulations of membrane remodeling by Bin/Amphiphysin/Rvs family proteins
Chun Chan(陈骏), Haohua Wen(文豪华), Lanyuan Lu(鲁兰原), Jun Fan(范俊). Chin. Phys. B, 2016, 25(1): 018707.
[15] Hamiltonian structure, Darboux transformation for a soliton hierarchy associated with Lie algebra so(4, C)
Wang Xin-Zeng (王新赠), Dong Huan-He (董焕河). Chin. Phys. B, 2015, 24(8): 080201.
No Suggested Reading articles found!