Special Issue:
TOPICAL REVIEW — Celebrating 30 Years of Chinese Physics B
|
TOPICAL REVIEW—Celebrating 30 Years of Chinese Physics B |
Prev
Next
|
|
|
Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications |
Wen-Zhe Liu(刘文哲)1,†, Lei Shi(石磊)2,3, Che-Ting Chan(陈子亭)1, and Jian Zi(资剑)2,3,‡ |
1. Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China; 2. State Key Laboratory of Surface Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China; 3. Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract In addition to non-radiative guided modes, two-dimensional photonic-crystal slabs support guided resonant ones which can radiate into free space. From the polarization states of these guided resonances, a polarization field on a photonic band can be constructed in momentum space. Momentum-space polarization fields display complicated configurations and patterns with different types of polarization singularities inside, shedding new light on the manipulations of light flows. In this review, we summarize the recent research progress on momentum-space polarization fields and singularities in two-dimensional photonic-crystal slabs, focusing on their unique optical properties and potential applications as well.
|
Received: 30 June 2022
Revised: 22 August 2022
Accepted manuscript online:
|
PACS:
|
42.25.Ja
|
(Polarization)
|
|
42.50.Tx
|
(Optical angular momentum and its quantum aspects)
|
|
42.70.Qs
|
(Photonic bandgap materials)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
Fund: The work was supported by the National Natural Science Foundation of China (Grant Nos. 11727811 and 91963212), the National Key Basic Research Program of China (Grant No. 2018YFA0306201), and Science and Technology Commission of Shanghai Municipality (Grant Nos. 19XD1434600, 2019SHZDZX01, 19DZ2253000, and 20501110500). |
Corresponding Authors:
Wen-Zhe Liu, Jian Zi
E-mail: wliubh@connect.ust.hk;jzi@fudan.edu.cn
|
Cite this article:
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑) Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications 2022 Chin. Phys. B 31 104211
|
[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059 [2] John S 1987 Phys. Rev. Lett. 58 2486 [3] Johnson S G, Fan S, Villeneuve P R, Joannopoulos J D and Kolodziejski L A 1999 Phys. Rev. B 60 5751 [4] Fan S and Joannopoulos J D 2002 Phys. Rev. B 65 235112 [5] Fan S, Suh W and Joannopoulos J D 2003 J. Opt. Soc. Am. A 20 569 [6] Miroshnichenko A E, Flach S and Kivshar Y S 2010 Rev. Mod. Phys. 82 2257 [7] Ganesh N, Zhang W, Mathias P C, Chow E, Soares J A N T, Malyarchuk V, Smith A D and Cunningham B T 2007 Nat. Nanotechnol. 2 515 [8] Yang Y, Kravchenko I I, Briggs D P and Valentine J 2014 Nat. Commun. 5 5753 [9] Zhen B, Hsu C W, Lu L, Stone A D and Soljačić M 2014 Phys. Rev. Lett. 113 257401 [10] Marinica D C, Borisov A G and Shabanov S V 2008 Phys. Rev. Lett. 100 183902 [11] Hsu C W, Zhen B, Stone A D, Joannopoulos J D and Soljačić M 2016 Nat. Rev. Mater. 1 16048 [12] Koshelev K, Bogdanov A and Kivshar Y 2019 Science Bulletin 64 836 [13] Fowles G R 1989 Introduction to modern optics (Gloucester: Courier Corporation) [14] Jackson J D 1999 Classical Electrodynamics, 3rd Edition (New York: John Wiley & Sons) [15] Griffiths D J 2013 Introduction to electrodynamics, 4th Edition (London: Pearson) [16] Schoonover R W and Visser T D 2006 Opt. Express 14 5733 [17] Nye J F 1983 Proc. R. Soc. Lond. A 389 279 [18] Dennis M R 2008 Opt. Lett. 33 2572 [19] Nye J F 1983 Proc. R. Soc. Lond. A 387 105 [20] Soskin M and Vasnetsov M 2001 in Progress in Optics (Amsterdam: Elsevier) vol. 42 pp. 219–276 [21] Dennis M R 2002 Opt. Commun. 213 201 [22] Dennis M R, O’Holleran K and Padgett M J 2009 in Progress in Optics (Amsterdam: Elsevier) vol. 53 pp. 293–363 [23] Freund I 2002 Opt. Commun. 201 251 [24] Soskin M S, Denisenko V and Freund I 2003 Opt. Lett. 28 1475 [25] Cardano F, Karimi E, Marrucci L, de Lisio C and Santamato E 2013 Opt. Express 21 8815 [26] Lim S W D, Park J S, Meretska M L, Dorrah A H and Capasso F 2021 Nat. Commun. 12 4190 [27] Berry M V, Dennis M R and Lee R L 2004 New J. Phys. 6 162 [28] Flossmann F, O‘Holleran K, Dennis M R and Padgett M J 2008 Phys. Rev. Lett. 100 203902 [29] Burresi M, Engelen R J P, Opheij A, van Oosten D, Mori D, Baba T and Kuipers L 2009 Phys. Rev. Lett. 102 033902 [30] Dennis M R 2011 Opt. Lett. 36 3765 [31] Chen W, Chen Y and Liu W 2019 Phys. Rev. Lett. 122 153907 [32] Chen W, Chen Y and Liu W 2020 Laser & Photonics Reviews 14 2000049 [33] Sugic D, Droop R, Otte E, Ehrmanntraut D, Nori F, Ruostekoski J, Denz C and Dennis M R 2021 Nat. Commun. 12 6785 [34] Peng J, Liu W and Wang S 2021 Phys. Rev. A 103 023520 [35] Peng J, Zhang R Y, Jia S, Liu W and Wang S 2022 arXiv: 2201.06918 [36] Fösel T, Peano V and Marquardt F 2017 New J. Phys. 19 115013 [37] Yablonovitch E 1994 J. Mod. Optic. 41 173 [38] Sakoda K 2005 Optical Properties of Photonic Crystals vol. 80 (Berlin Heidelberg: Springer) [39] Joannopoulos J D, Johnson S G, Winn J N and Meade R D 2008 PPhotonic Crystals, 2nd Edn. (Princeton university press) [40] Sakurai J J and Napolitano J 1985 Modern quantum mechanics, 3rd Edn. (Cambridge: Cambridge University Press) [41] Hatano N, Sasada K, Nakamura H and Petrosky T 2008 Prog. Theor. Phys. 119 187 [42] Jones R C 1941 Josa 31 488 [43] Zhang Y, Chen A, Liu W, Hsu C W, Wang B, Guan F, Liu X, Shi L, Lu L and Zi J 2018 Phys. Rev. Lett. 120 186103 [44] Liu W, Wang B, Zhang Y, Wang J, Zhao M, Guan F, Liu X, Shi L and Zi J 2019 Phys. Rev. Lett. 123 116104 [45] Sadrieva Z, Frizyuk K, Petrov M, Kivshar Y and Bogdanov A 2019 Phys. Rev. B 100 115303 [46] Doeleman H M, Monticone F, den Hollander W, Alù A and Koenderink A F 2018 Nat. Photonics 12 397 [47] Chen A, Liu W, Zhang Y, Wang B, Liu X, Shi L, Lu L and Zi J 2019 Phys. Rev. B 99 180101 [48] Chong Y D, Wen X G and Soljačić M 2008 Phys. Rev. B 77 235125 [49] Zhou H, Peng C, Yoon Y, Hsu C W, Nelson K A, Fu L, Joannopoulos J D, Soljačić M and Zhen B 2018 Science 359 1009 [50] Ye W, Gao Y and Liu J 2020 Phys. Rev. Lett. 124 153904 [51] Guo C, Xiao M, Guo Y, Yuan L and Fan S 2020 Phys. Rev. Lett. 124 106103 [52] Chen W, Yang Q, Chen Y and Liu W 2021 Proc. Natl. Acad. Sci. 118 e2019578118 [53] Yoda T and Notomi M 2020 2020 Phys. Rev. Lett. 125 053902 [54] Che Z, Zhang Y, Liu W, Zhao M, Wang J, Zhang W, Guan F, Liu X, Liu W, Shi L and Zi J 2021 Phys. Rev. Lett. 127 043901 [55] Song Q, Hu J, Dai S, Zheng C, Han D, Zi J, Zhang Z Q and Chan C T 2020 Sci. Adv. 6 eabc1160 [56] Song Q, Dai S, Han D, Zhang Z Q, Chan C T and Zi J 2021 Chin. Phys. Lett. 38 084203 [57] Dong T, Liang J, Camayd-Muñoz S, Liu Y, Tang H, Kita S, Chen P, Wu X, Chu W, Mazur E and Li Y 2021 Light: Science & Applications 10 10 [58] Tang H, DeVault C, Camayd-Muñoz S A, Liu Y, Jia D, Du F, Mello O, Vulis D I, Li Y and Mazur E 2021 Nano Lett. 21 914 [59] Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y and Kanté B 2017 Nature 541 196 [60] Ha S T, Fu Y H, Emani N K, Pan Z, Bakker R M, Paniagua-Domínguez R and Kuznetsov A I 2018 Nat. Nanotechnol. 13 1042 [61] Wu M, Ha S T, Shendre S, Durmusoglu E G, Koh W K, Abujetas D R, Sánchez-Gil J A, Paniagua-Domínguez R, Demir H V and Kuznetsov A I 2020 Nano Lett. 20 6005 [62] Hwang M S, Lee H C, Kim K H, Jeong K Y, Kwon S H, Koshelev K, Kivshar Y and Park H G 2021 Nat. Commun. 12 4135 [63] Wang Y, Fan Y, Zhang X, Tang H, Song Q, Han J and Xiao S 2021 ACS Nano 15 7386 [64] Carletti L, Koshelev K, De Angelis C and Kivshar Y 2018 Phys. Rev. Lett. 121 033903 [65] Bulgakov E N and Maksimov D N 2019 Sci. Rep. 9 7153 [66] Koshelev K, Tang Y, Li K, Choi D Y, Li G and Kivshar Y 2019 ACS Photonics 6 1639 [67] Mikheeva E, Koshelev K, Choi D Y, Kruk S, Lumeau J, Abdeddaim R, Voznyuk I, Enoch S and Kivshar Y 2019 Opt. Express 27 33847 [68] Carletti L, Kruk S S, Bogdanov A A, De Angelis C and Kivshar Y 2019 Phys. Rev. Research 1 023016 [69] Jin J, Yin X, Ni L, Soljačić M, Zhen B and Peng C 2019 Nature 574 501 [70] Kang M, Zhang S, Xiao M and Xu H 2021 Phys. Rev. Lett. 126 117402 [71] Kang M, Mao L, Zhang S, Xiao M, Xu H and Chan C T 2022 Light: Science & Applications 11 228 [72] Yin X, Jin J, Soljačić M, Peng C and Zhen B 2020 Nature 580 467 [73] Zeng Y, Hu G, Liu K, Tang Z and Qiu C W 2021 Phys. Rev. Lett. 127 176101 [74] Yin X, Inoue T, Peng C and Noda S 2022 arXiv: 2203.02223 [75] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333 [76] Kildishev A V, Boltasseva A and Shalaev V M 2013 Science 339 1232009 [77] Yu N and Capasso F 2014 Nat. Mater. 13 139 [78] Lin D, Fan P, Hasman E and Brongersma M L 2014 Science 345 298 [79] Chen H T, Taylor A J and Yu N 2016 Rep. Prog. Phys. 79 076401 [80] Kuznetsov A I, Miroshnichenko A E, Brongersma M L, Kivshar Y S and Luk’yanchuk B 2016 Science 354 aag2472 [81] Song E Y, Lee G Y, Park H, Lee K, Kim J, Hong J, Kim H and Lee B 2017 Adv. Opt. Mater. 5 1601028 [82] Genevet P, Yu N, Aieta F, Lin J, Kats M A, Blanchard R, Scully M O, Gaburro Z and Capasso F 2012 Appl. Phys. Lett. 100 013101 [83] Yang Y, Wang W, Moitra P, Kravchenko I I, Briggs D P and Valentine J 2014 Nano Lett. 14 1394 [84] Arbabi A, Horie Y, Bagheri M and Faraon A 2015 Nat. Nanotechnol. 10 937 [85] Yue F, Wen D, Xin J, Gerardot B D, Li J and Chen X 2016 ACS Photonics 3 1558 [86] Guo Y, Xiao M and Fan S 2017 Phys. Rev. Lett. 119 167401 [87] Guo Y, Xiao M, Zhou Y and Fan S 2019 Adv. Opt. Mater. 7 1801453 [88] Wang B, Liu W, Zhao M, Wang J, Zhang Y, Chen A, Guan F, Liu X, Shi L and Zi J 2020 Nat. Photonics 14 623 [89] Guo C, Wang H and Fan S 2020 Optica 7 1133 [90] Chen A and Monticone F 2021 ACS Photonics 8 1439 [91] Guo C, Xiao M, Orenstein M and Fan S 2021 Light: Science & Applications 10 160 [92] Reshef O, DelMastro M P, Bearne K K M, Alhulaymi A H, Giner L, Boyd R W and Lundeen J S S 2021 Nat. Commun. 12 3512 [93] Wang J, Zhao M, Liu W, Guan F, Liu X, Shi L, Chan C T and Zi J 2021 Nat. Commun. 12 6046 [94] Wang J, Li H, Ma Y, Zhao M, Liu W, Wang B, Wu S, Liu X, Shi L, Jiang T and Zi J 2020 Light: Science & Applications 9 148 [95] Li H, Wang J, Ma Y, Chu J, Cheng X, Shi L and Jiang T 2020 Nanophotonics 9 4337 [96] Tian J, Adamo G, Liu H, Klein M, Han S, Liu H and Soci C 2022 Adv. Mater. 34 2109157 [97] Pancharatnam S 1956 in Proceedings of the Indian Academy of Sciences-Section A (Springer) vol. 44 pp. 398–417 [98] Berry M V 1984 Proc. Roy. Soc. London A. Math. Phys. Sci. 392 45 [99] Berry M 1987 J. Mod. Optic. 34 1401 [100] Bhandari R 1997 Phys. Rep. 281 1 [101] Bomzon Z, Biener G, Kleiner V and Hasman E 2002 Opt. Lett. 27 1141 [102] Karimi E, Schulz S A, De Leon I, Qassim H, Upham J and Boyd R W 2014 Light: Science & Applications 3 e167 [103] Ding X, Monticone F, Zhang K, Zhang L, Gao D, Burokur S N, de Lustrac A, Wu Q, Qiu C W and Alù A 2014 Adv. Mater. 27 1195 [104] Huang C, Zhang C, Xiao S, Wang Y, Fan Y, Liu Y, Zhang N, Qu G, Ji H, Han J, Ge L, Kivshar Y and Song Q 2020 Science 367 1018 [105] Wu Y, Kang L and Werner D H 2022 New J. Phys. 24 033002 [106] Kang L, Wu Y, Ma X, Lan S and Werner D H 2021 Adv. Opt. Mater. 10 2101497 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|